|
import pandas as pd |
|
from sklearn.ensemble import ( |
|
GradientBoostingRegressor, |
|
RandomForestRegressor, |
|
StackingRegressor, |
|
) |
|
from sklearn.linear_model import LinearRegression, RidgeCV |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import mean_absolute_error |
|
from sklearn.preprocessing import StandardScaler |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
X = train_data.drop(["id", "yield"], axis=1) |
|
y = train_data["yield"] |
|
X_test = test_data.drop("id", axis=1) |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
scaler = StandardScaler() |
|
X_train_scaled = scaler.fit_transform(X_train) |
|
X_val_scaled = scaler.transform(X_val) |
|
X_test_scaled = scaler.transform(X_test) |
|
|
|
|
|
estimators = [ |
|
( |
|
"gbr", |
|
GradientBoostingRegressor( |
|
n_estimators=200, learning_rate=0.1, max_depth=4, random_state=42 |
|
), |
|
), |
|
("rf", RandomForestRegressor(n_estimators=200, random_state=42)), |
|
("lr", LinearRegression()), |
|
] |
|
|
|
|
|
stacking_regressor = StackingRegressor(estimators=estimators, final_estimator=RidgeCV()) |
|
|
|
|
|
stacking_regressor.fit(X_train_scaled, y_train) |
|
|
|
|
|
y_val_pred = stacking_regressor.predict(X_val_scaled) |
|
|
|
|
|
mae = mean_absolute_error(y_val, y_val_pred) |
|
print(f"Mean Absolute Error on validation set with StackingRegressor: {mae}") |
|
|
|
|
|
stacking_regressor.fit(scaler.transform(X), y) |
|
test_predictions = stacking_regressor.predict(X_test_scaled) |
|
|
|
|
|
submission = pd.DataFrame({"id": test_data["id"], "yield": test_predictions}) |
|
submission.to_csv("./working/submission.csv", index=False) |
|
|