|
import pandas as pd |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import f1_score |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split( |
|
train_data["text"], train_data["target"], test_size=0.2, random_state=42 |
|
) |
|
|
|
|
|
vectorizer = TfidfVectorizer() |
|
X_train_tfidf = vectorizer.fit_transform(X_train) |
|
X_val_tfidf = vectorizer.transform(X_val) |
|
|
|
|
|
model = LogisticRegression() |
|
model.fit(X_train_tfidf, y_train) |
|
|
|
|
|
val_predictions = model.predict(X_val_tfidf) |
|
|
|
|
|
f1 = f1_score(y_val, val_predictions) |
|
print(f"F1 Score on the validation set: {f1}") |
|
|
|
|
|
X_test_tfidf = vectorizer.transform(test_data["text"]) |
|
test_predictions = model.predict(X_test_tfidf) |
|
submission = pd.DataFrame({"id": test_data["id"], "target": test_predictions}) |
|
submission.to_csv("./working/submission.csv", index=False) |
|
|