|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.linear_model import Lasso |
|
from sklearn.preprocessing import StandardScaler, OneHotEncoder |
|
from sklearn.compose import ColumnTransformer |
|
from sklearn.pipeline import Pipeline |
|
from sklearn.impute import SimpleImputer |
|
from sklearn.metrics import mean_squared_error |
|
import numpy as np |
|
|
|
|
|
train = pd.read_csv("./input/train.csv") |
|
test = pd.read_csv("./input/test.csv") |
|
|
|
|
|
key_features = ["OverallQual", "GrLivArea", "TotalBsmtSF", "GarageCars"] |
|
|
|
|
|
for i in range(len(key_features)): |
|
for j in range(i + 1, len(key_features)): |
|
name = key_features[i] + "_X_" + key_features[j] |
|
train[name] = train[key_features[i]] * train[key_features[j]] |
|
test[name] = test[key_features[i]] * test[key_features[j]] |
|
|
|
|
|
X = train.drop(["SalePrice", "Id"], axis=1) |
|
y = np.log(train["SalePrice"]) |
|
test_ids = test["Id"] |
|
test = test.drop(["Id"], axis=1) |
|
|
|
|
|
numerical_transformer = Pipeline( |
|
steps=[("imputer", SimpleImputer(strategy="median")), ("scaler", StandardScaler())] |
|
) |
|
|
|
|
|
categorical_transformer = Pipeline( |
|
steps=[ |
|
("imputer", SimpleImputer(strategy="most_frequent")), |
|
("onehot", OneHotEncoder(handle_unknown="ignore")), |
|
] |
|
) |
|
|
|
|
|
preprocessor = ColumnTransformer( |
|
transformers=[ |
|
("num", numerical_transformer, X.select_dtypes(exclude=["object"]).columns), |
|
("cat", categorical_transformer, X.select_dtypes(include=["object"]).columns), |
|
] |
|
) |
|
|
|
|
|
model = Pipeline( |
|
steps=[("preprocessor", preprocessor), ("regressor", Lasso(alpha=0.001))] |
|
) |
|
|
|
|
|
X_train, X_valid, y_train, y_valid = train_test_split( |
|
X, y, train_size=0.8, test_size=0.2, random_state=0 |
|
) |
|
|
|
|
|
model.fit(X_train, y_train) |
|
|
|
|
|
preds_valid = model.predict(X_valid) |
|
|
|
|
|
score = mean_squared_error(y_valid, preds_valid, squared=False) |
|
print(f"Validation RMSE: {score}") |
|
|
|
|
|
test_preds = model.predict(test) |
|
|
|
|
|
output = pd.DataFrame( |
|
{"Id": test_ids, "SalePrice": np.exp(test_preds)} |
|
) |
|
output.to_csv("./working/submission.csv", index=False) |
|
|