|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.ensemble import GradientBoostingRegressor |
|
from sklearn.metrics import mean_squared_error |
|
from sklearn.preprocessing import OneHotEncoder |
|
from sklearn.compose import ColumnTransformer |
|
from sklearn.pipeline import Pipeline |
|
from sklearn.impute import SimpleImputer |
|
import numpy as np |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
y = train_data.SalePrice |
|
X = train_data.drop(["SalePrice"], axis=1) |
|
|
|
|
|
numerical_transformer = SimpleImputer(strategy="median") |
|
|
|
|
|
categorical_transformer = Pipeline( |
|
steps=[ |
|
("imputer", SimpleImputer(strategy="most_frequent")), |
|
("onehot", OneHotEncoder(handle_unknown="ignore")), |
|
] |
|
) |
|
|
|
|
|
preprocessor = ColumnTransformer( |
|
transformers=[ |
|
("num", numerical_transformer, X.select_dtypes(exclude=["object"]).columns), |
|
("cat", categorical_transformer, X.select_dtypes(include=["object"]).columns), |
|
] |
|
) |
|
|
|
|
|
model = GradientBoostingRegressor() |
|
|
|
|
|
my_pipeline = Pipeline(steps=[("preprocessor", preprocessor), ("model", model)]) |
|
|
|
|
|
X_train, X_valid, y_train, y_valid = train_test_split( |
|
X, y, train_size=0.8, test_size=0.2, random_state=0 |
|
) |
|
|
|
|
|
my_pipeline.fit(X_train, np.log(y_train)) |
|
|
|
|
|
preds = my_pipeline.predict(X_valid) |
|
|
|
|
|
score = mean_squared_error(np.log(y_valid), preds, squared=False) |
|
print("RMSE:", score) |
|
|
|
|
|
test_preds = my_pipeline.predict(test_data) |
|
|
|
|
|
output = pd.DataFrame({"Id": test_data.Id, "SalePrice": np.exp(test_preds)}) |
|
output.to_csv("./working/submission.csv", index=False) |
|
|