import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.metrics import accuracy_score | |
# Load the data | |
train_data = pd.read_csv("./input/train.csv") | |
test_data = pd.read_csv("./input/test.csv") | |
# Separate features and target | |
X = train_data.drop(columns=["Id", "Cover_Type"]) | |
y = train_data["Cover_Type"] | |
# Split the data into training and validation sets | |
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) | |
# Initialize and train the Random Forest Classifier | |
model = RandomForestClassifier(random_state=42) | |
model.fit(X_train, y_train) | |
# Predict on the validation set and calculate accuracy | |
val_predictions = model.predict(X_val) | |
accuracy = accuracy_score(y_val, val_predictions) | |
print(f"Validation Accuracy: {accuracy}") | |
# Predict on the test set | |
test_predictions = model.predict(test_data.drop(columns=["Id"])) | |
# Save the predictions to a CSV file | |
submission = pd.DataFrame({"Id": test_data["Id"], "Cover_Type": test_predictions}) | |
submission.to_csv("./working/submission.csv", index=False) | |