import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.ensemble import GradientBoostingRegressor | |
from sklearn.metrics import mean_squared_error | |
import numpy as np | |
# Load the data | |
train_data = pd.read_csv("./input/train.csv") | |
test_data = pd.read_csv("./input/test.csv") | |
# Prepare the data | |
X = train_data.drop(["id", "Strength"], axis=1) | |
y = train_data["Strength"] | |
X_test = test_data.drop("id", axis=1) | |
# Split the data into training and validation sets | |
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) | |
# Initialize and train the model | |
model = GradientBoostingRegressor(random_state=42) | |
model.fit(X_train, y_train) | |
# Predict on validation set | |
y_pred_val = model.predict(X_val) | |
# Evaluate the model | |
rmse = np.sqrt(mean_squared_error(y_val, y_pred_val)) | |
print(f"Validation RMSE: {rmse}") | |
# Predict on test set | |
test_predictions = model.predict(X_test) | |
# Save the predictions to a CSV file | |
submission = pd.DataFrame({"id": test_data["id"], "Strength": test_predictions}) | |
submission.to_csv("./working/submission.csv", index=False) | |