|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.metrics import roc_auc_score |
|
from sklearn.preprocessing import OneHotEncoder, StandardScaler |
|
from sklearn.compose import ColumnTransformer |
|
from sklearn.pipeline import Pipeline |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
X = train_data.drop(["Attrition", "id"], axis=1) |
|
y = train_data["Attrition"] |
|
X_test = test_data.drop("id", axis=1) |
|
|
|
|
|
categorical_cols = X.select_dtypes(include=["object"]).columns |
|
numerical_cols = X.select_dtypes(include=["int64", "float64"]).columns |
|
|
|
|
|
numeric_transformer = Pipeline(steps=[("scaler", StandardScaler())]) |
|
|
|
categorical_transformer = Pipeline( |
|
steps=[("onehot", OneHotEncoder(handle_unknown="ignore"))] |
|
) |
|
|
|
|
|
preprocessor = ColumnTransformer( |
|
transformers=[ |
|
("num", numeric_transformer, numerical_cols), |
|
("cat", categorical_transformer, categorical_cols), |
|
] |
|
) |
|
|
|
|
|
model = Pipeline( |
|
steps=[ |
|
("preprocessor", preprocessor), |
|
("classifier", LogisticRegression(solver="liblinear")), |
|
] |
|
) |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
model.fit(X_train, y_train) |
|
|
|
|
|
y_pred_proba = model.predict_proba(X_val)[:, 1] |
|
|
|
|
|
auc = roc_auc_score(y_val, y_pred_proba) |
|
print(f"Validation AUC: {auc}") |
|
|
|
|
|
test_pred_proba = model.predict_proba(X_test)[:, 1] |
|
|
|
|
|
submission = pd.DataFrame( |
|
{"EmployeeNumber": test_data["id"], "Attrition": test_pred_proba} |
|
) |
|
submission.to_csv("./working/submission.csv", index=False) |
|
|