File size: 1,102 Bytes
5cbc1e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error
import numpy as np
# Load the data
train_data = pd.read_csv("./input/train.csv")
test_data = pd.read_csv("./input/test.csv")
# Prepare the data
X = train_data.drop(["id", "Strength"], axis=1)
y = train_data["Strength"]
X_test = test_data.drop("id", axis=1)
# Split the data into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize and train the model
model = GradientBoostingRegressor(random_state=42)
model.fit(X_train, y_train)
# Predict on validation set
y_pred_val = model.predict(X_val)
# Evaluate the model
rmse = np.sqrt(mean_squared_error(y_val, y_pred_val))
print(f"Validation RMSE: {rmse}")
# Predict on test set
test_predictions = model.predict(X_test)
# Save the predictions to a CSV file
submission = pd.DataFrame({"id": test_data["id"], "Strength": test_predictions})
submission.to_csv("./working/submission.csv", index=False)
|