File size: 2,077 Bytes
5cbc1e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import LabelEncoder
# Load the data
train_data = pd.read_csv("./input/train.csv")
test_data = pd.read_csv("./input/test.csv")
# Prepare the data
X = train_data.drop(["id", "prognosis"], axis=1)
y = train_data["prognosis"]
X_test = test_data.drop(["id"], axis=1)
test_ids = test_data["id"]
# Encode the target variable
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)
# Split the data into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(
X, y_encoded, test_size=0.2, random_state=42
)
# Train the model
model = OneVsRestClassifier(RandomForestClassifier(n_estimators=100, random_state=42))
model.fit(X_train, y_train)
# Predict on the validation set
y_val_pred_proba = model.predict_proba(X_val)
# Select the top 3 predictions for each sample
top3_preds = pd.DataFrame(y_val_pred_proba).apply(
lambda x: label_encoder.inverse_transform(x.argsort()[-3:][::-1]), axis=1
)
# Evaluate the model using MPA@3
def mpa_at_k(y_true, y_pred, k=3):
score = 0.0
for true, pred in zip(y_true, y_pred):
try:
index = list(pred).index(true)
score += 1.0 / (index + 1)
except ValueError:
continue
return score / len(y_true)
# Calculate the MPA@3 score
y_val_true = label_encoder.inverse_transform(y_val)
mpa_score = mpa_at_k(y_val_true, top3_preds)
print(f"MPA@3 score on the validation set: {mpa_score}")
# Predict on the test set
y_test_pred_proba = model.predict_proba(X_test)
top3_test_preds = pd.DataFrame(y_test_pred_proba).apply(
lambda x: label_encoder.inverse_transform(x.argsort()[-3:][::-1]), axis=1
)
# Prepare the submission file
submission = pd.DataFrame(
{
"id": test_ids,
"prognosis": [" ".join(map(str, preds)) for preds in top3_test_preds],
}
)
submission.to_csv("./working/submission.csv", index=False)
|