File size: 63,058 Bytes
36b7c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
import json
import time
import uuid
import html
import hashlib # Added import
from datetime import datetime
from typing import Dict, List, Any, Optional
from flask import request, Response, stream_with_context, jsonify, render_template, redirect, url_for, flash
from datetime import datetime

from utils import logger, generate_request_id, count_tokens, count_message_tokens
import config
from auth import RateLimiter
from client import OnDemandAPIClient
from datetime import timedelta

# 初始化速率限制器
# rate_limiter 将在 config_instance 定义后初始化

# 获取配置实例
config_instance = config.config_instance
rate_limiter = RateLimiter(config_instance.get('rate_limit_per_minute', 60))  # 从配置读取,默认为60

# 模型价格配置将从 config_instance 获取
# 默认价格也将从 config_instance 获取

def format_datetime(timestamp):
    """将ISO格式时间戳格式化为更易读的格式"""
    if not timestamp or timestamp == "从未保存":
        return timestamp
    
    try:
        # 处理ISO格式时间戳
        if 'T' in timestamp:
            dt = datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
            return dt.strftime('%Y-%m-%d %H:%M:%S')
        # 处理已经是格式化字符串的情况
        return timestamp
    except Exception:
        return timestamp

def format_number(value):
    """根据数值大小自动转换单位"""
    if value is None or value == '-':
        return '-'
    
    try:
        value = float(value)
        if value >= 1000000000000:  # 万亿 (T)
            return f"{value/1000000000000:.2f}T"
        elif value >= 1000000000:  # 十亿 (G)
            return f"{value/1000000000:.2f}G"
        elif value >= 1000000:  # 百万 (M)
            return f"{value/1000000:.2f}M"
        elif value >= 1000:  # 千 (K)
            return f"{value/1000:.2f}K"
        elif value == 0:  # 零
            return "0"
        elif abs(value) < 0.01:  # 非常小的数值,使用科学计数法
            return f"{value:.2e}"
        else:
            return f"{value:.0f}" if value == int(value) else f"{value:.2f}"
    except (ValueError, TypeError):
        return str(value)

def format_duration(ms):
    """将毫秒格式化为更易读的格式"""
    if ms is None or ms == '-':
        return '-'
    
    try:
        ms = float(ms)  # 使用float而不是int,以支持小数
        if ms >= 86400000:  # 超过1天 (24*60*60*1000)
            return f"{ms/86400000:.2f}天"
        elif ms >= 3600000:  # 超过1小时 (60*60*1000)
            return f"{ms/3600000:.2f}小时"
        elif ms >= 60000:  # 超过1分钟 (60*1000)
            return f"{ms/60000:.2f}分钟"
        elif ms >= 1000:  # 超过1秒
            return f"{ms/1000:.2f}秒"
        else:
            return f"{ms:.0f}" if ms == int(ms) else f"{ms:.2f}毫秒"
    except (ValueError, TypeError):
        return str(ms)

def _update_usage_statistics(
    config_inst,
    request_id: str,
    requested_model_name: str,
    account_email: Optional[str],
    is_success: bool,
    duration_ms: int,
    is_stream: bool,
    prompt_tokens_val: int,
    completion_tokens_val: int,
    total_tokens_val: int,
    prompt_length: Optional[int] = None,
    completion_length: Optional[int] = None,
    error_message: Optional[str] = None,
    used_actual_tokens_for_history: bool = False
):
    """更新使用统计与请求历史的辅助函数。"""
    with config_inst.usage_stats_lock:
        config_inst.usage_stats["total_requests"] += 1
        
        current_email_for_stats = account_email if account_email else "unknown_account"

        if is_success:
            config_inst.usage_stats["successful_requests"] += 1
            config_inst.usage_stats["model_usage"].setdefault(requested_model_name, 0)
            config_inst.usage_stats["model_usage"][requested_model_name] += 1
            
            config_inst.usage_stats["account_usage"].setdefault(current_email_for_stats, 0)
            config_inst.usage_stats["account_usage"][current_email_for_stats] += 1

            config_inst.usage_stats["total_prompt_tokens"] += prompt_tokens_val
            config_inst.usage_stats["total_completion_tokens"] += completion_tokens_val
            config_inst.usage_stats["total_tokens"] += total_tokens_val
            config_inst.usage_stats["model_tokens"].setdefault(requested_model_name, 0)
            config_inst.usage_stats["model_tokens"][requested_model_name] += total_tokens_val

            today = datetime.now().strftime("%Y-%m-%d")
            hour = datetime.now().strftime("%Y-%m-%d %H:00")
            
            config_inst.usage_stats["daily_usage"].setdefault(today, 0)
            config_inst.usage_stats["daily_usage"][today] += 1
            
            config_inst.usage_stats["hourly_usage"].setdefault(hour, 0)
            config_inst.usage_stats["hourly_usage"][hour] += 1
            
            config_inst.usage_stats["daily_tokens"].setdefault(today, 0)
            config_inst.usage_stats["daily_tokens"][today] += total_tokens_val
            
            config_inst.usage_stats["hourly_tokens"].setdefault(hour, 0)
            config_inst.usage_stats["hourly_tokens"][hour] += total_tokens_val
        else:
            config_inst.usage_stats["failed_requests"] += 1

        history_entry = {
            "id": request_id,
            "timestamp": datetime.now().isoformat(),
            "model": requested_model_name,
            "account": current_email_for_stats,
            "success": is_success,
            "duration_ms": duration_ms,
            "stream": is_stream,
        }

        if is_success:
            if prompt_length is not None:
                history_entry["prompt_length"] = prompt_length
            if completion_length is not None:
                history_entry["completion_length"] = completion_length
            
            if is_stream:
                if used_actual_tokens_for_history:
                    history_entry["prompt_tokens"] = prompt_tokens_val
                    history_entry["completion_tokens"] = completion_tokens_val
                    history_entry["total_tokens"] = total_tokens_val
                else:
                    history_entry["prompt_tokens"] = prompt_tokens_val
                    history_entry["estimated_completion_tokens"] = completion_tokens_val
                    history_entry["estimated_total_tokens"] = total_tokens_val
            else: 
                history_entry["prompt_tokens"] = prompt_tokens_val
                history_entry["completion_tokens"] = completion_tokens_val
                history_entry["total_tokens"] = total_tokens_val
        else: 
            if error_message:
                history_entry["error"] = error_message
            if prompt_tokens_val > 0:
                 history_entry["prompt_tokens_attempted"] = prompt_tokens_val

        config_inst.usage_stats["request_history"].append(history_entry)
        max_history_items = config_inst.get('max_history_items', 1000)
        if len(config_inst.usage_stats["request_history"]) > max_history_items:
            config_inst.usage_stats["request_history"] = \
                config_inst.usage_stats["request_history"][-max_history_items:]

def _generate_hash_for_full_history(full_messages_list: List[Dict[str, str]], req_id: str) -> Optional[str]:
    """
    Generates a SHA256 hash from a list of messages, considering all messages.
    """
    if not full_messages_list:
        logger.debug(f"[{req_id}] (_generate_hash_for_full_history) No messages to hash.")
        return None
    try:
        # Ensure consistent serialization for hashing
        # Context meaning is only in role and content
        simplified_history = [{"role": msg.get("role"), "content": msg.get("content")} for msg in full_messages_list]
        serialized_history = json.dumps(simplified_history, sort_keys=True)
        return hashlib.sha256(serialized_history.encode('utf-8')).hexdigest()
    except (TypeError, ValueError) as e:
        logger.error(f"[{req_id}] (_generate_hash_for_full_history) Failed to serialize full history messages for hashing: {e}")
        return None

def _update_client_context_hash_after_reply(
    original_request_messages: List[Dict[str, str]],
    assistant_reply_content: str,
    request_id: str,
    user_identifier: str, # Corresponds to 'token' in chat_completions
    email_for_stats: Optional[str],
    current_ondemand_client_instance: Optional[OnDemandAPIClient],
    config_inst: config.Config,
    logger_instance # Pass logger directly
):
    """
    Helper to update the client's active_context_hash after a successful reply
    using the full conversation history up to the assistant's reply.
    """
    if not assistant_reply_content or not email_for_stats or not current_ondemand_client_instance:
        logger_instance.debug(f"[{request_id}] 更新客户端上下文哈希的条件不足(回复内容 '{bool(assistant_reply_content)}', 邮箱 '{email_for_stats}', 客户端实例 '{bool(current_ondemand_client_instance)}'),跳过。")
        return

    assistant_message = {"role": "assistant", "content": assistant_reply_content}
    # original_request_messages should be the messages list as it was when the request came in.
    full_history_up_to_assistant_reply = original_request_messages + [assistant_message]
    
    next_active_context_hash = _generate_hash_for_full_history(full_history_up_to_assistant_reply, request_id)
    
    if next_active_context_hash:
        with config_inst.client_sessions_lock:
            if user_identifier in config_inst.client_sessions and \
               email_for_stats in config_inst.client_sessions[user_identifier]:
                
                session_data_to_update = config_inst.client_sessions[user_identifier][email_for_stats]
                client_in_session = session_data_to_update.get("client")

                # DEBUGGING LOGS START
                logger_instance.debug(f"[{request_id}] HASH_UPDATE_DEBUG: client_in_session id={id(client_in_session)}, email={getattr(client_in_session, 'email', 'N/A')}, session_id={getattr(client_in_session, 'session_id', 'N/A')}")
                logger_instance.debug(f"[{request_id}] HASH_UPDATE_DEBUG: current_ondemand_client_instance id={id(current_ondemand_client_instance)}, email={getattr(current_ondemand_client_instance, 'email', 'N/A')}, session_id={getattr(current_ondemand_client_instance, 'session_id', 'N/A')}")
                logger_instance.debug(f"[{request_id}] HASH_UPDATE_DEBUG: Comparison result (client_in_session == current_ondemand_client_instance): {client_in_session == current_ondemand_client_instance}")
                logger_instance.debug(f"[{request_id}] HASH_UPDATE_DEBUG: Comparison result (client_in_session is current_ondemand_client_instance): {client_in_session is current_ondemand_client_instance}")
                # DEBUGGING LOGS END

                if client_in_session == current_ondemand_client_instance:
                    old_hash = session_data_to_update.get("active_context_hash")
                    session_data_to_update["active_context_hash"] = next_active_context_hash
                    session_data_to_update["last_time"] = datetime.now()
                    logger_instance.info(f"[{request_id}] 客户端 (账户: {email_for_stats}) 的 active_context_hash 已从 '{old_hash}' 更新为 '{next_active_context_hash}' 以反映对话进展。")
                else:
                    logger_instance.warning(f"[{request_id}] 尝试更新哈希时,发现 email_for_stats '{email_for_stats}' 对应的存储客户端与当前使用的 ondemand_client 不一致。跳过更新。")
            else:
                logger_instance.warning(f"[{request_id}] 尝试更新哈希时,在 client_sessions 中未找到用户 '{user_identifier}' 或账户 '{email_for_stats}'。跳过更新。")
    else:
        logger_instance.warning(f"[{request_id}] 未能为下一次交互生成新的 active_context_hash (基于回复 '{bool(assistant_reply_content)}'). 客户端的哈希未更新。")
 
def _get_context_key_from_messages(messages: List[Dict[str, str]], req_id: str) -> Optional[str]:
    """
    从末次用户消息前的消息列表生成上下文哈希密钥。
    """
    if not messages:
        logger.debug(f"[{req_id}] 无消息可供生成上下文密钥。")
        return None

    last_user_msg_idx = -1
    for i in range(len(messages) - 1, -1, -1):
        if messages[i].get('role') == 'user':
            last_user_msg_idx = i
            break
    
    # 若无用户消息或用户消息为首条,则无先前历史可生成上下文密钥。
    if last_user_msg_idx <= 0:
        logger.debug(f"[{req_id}] 无先前历史可生成上下文密钥 (last_user_msg_idx: {last_user_msg_idx})。")
        return None
    
    historical_messages = messages[:last_user_msg_idx]
    if not historical_messages: # 应由 last_user_msg_idx <= 0 捕获,此处为额外保障
        logger.debug(f"[{req_id}] 上下文密钥的历史消息列表为空。")
        return None

    try:
        # 确保哈希序列化的一致性
        # 上下文意义仅关注角色和内容
        simplified_history = [{"role": msg.get("role"), "content": msg.get("content")} for msg in historical_messages]
        serialized_history = json.dumps(simplified_history, sort_keys=True)
        return hashlib.sha256(serialized_history.encode('utf-8')).hexdigest()
    except (TypeError, ValueError) as e:
        logger.error(f"[{req_id}] 序列化历史消息以生成上下文密钥失败: {e}")
        return None

def register_routes(app):
    """注册所有路由到Flask应用"""
    
    # 注册自定义过滤器
    app.jinja_env.filters['format_datetime'] = format_datetime
    app.jinja_env.filters['format_number'] = format_number
    app.jinja_env.filters['format_duration'] = format_duration
    
    @app.route('/health', methods=['GET'])
    def health_check():
        """健康检查端点,返回服务状态"""
        return {"status": "ok", "message": "2API服务运行正常"}, 200
    
    @app.route('/v1/models', methods=['GET'])
    def list_models():
        """以 OpenAI 格式返回可用模型列表。"""
        data = []
        # 获取当前时间戳,用于 'created' 字段
        created_time = int(time.time())
        model_mapping = config_instance._model_mapping
        for openai_name in model_mapping.keys():  # 仅列出已映射的模型
            data.append({
                "id": openai_name,
                "object": "model",
                "created": created_time,
                "owned_by": "on-demand.io"  # 或根据模型来源填写 "openai", "anthropic" 等
            })
        return {"object": "list", "data": data}
    
    @app.route('/v1/chat/completions', methods=['POST'])
    def chat_completions():
        """处理聊天补全请求,兼容 OpenAI 格式。"""
        request_id = generate_request_id()  # 生成唯一的请求 ID
        logger.info(f"[{request_id}] CHAT_COMPLETIONS_ENTRY_POINT") # 最早的日志点
        client_ip = request.remote_addr  # 获取客户端 IP 地址,仅用于日志记录
        logger.info(f"[{request_id}] 收到来自 IP: {client_ip} 的 /v1/chat/completions 请求")

        # 尝试在更早的位置打印一些调试信息
        logger.info(f"[{request_id}] DEBUG_ENTRY: 进入 chat_completions。")
        
        # 验证访问令牌
        auth_header = request.headers.get('Authorization')
        if not auth_header or not auth_header.startswith('Bearer '):
            logger.warning(f"[{request_id}] 未提供认证令牌或格式错误")
            return {"error": {"message": "缺少有效的认证令牌", "type": "auth_error", "code": "missing_token"}}, 401
        
        # 获取API访问令牌
        api_access_token = config_instance.get('api_access_token')
        token = auth_header[7:]  # 去掉 'Bearer ' 前缀
        if token != api_access_token:
            logger.warning(f"[{request_id}] 提供了无效的认证令牌")
            return {"error": {"message": "无效的认证令牌", "type": "auth_error", "code": "invalid_token"}}, 401

        # 检查速率限制 - 使用token而不是IP进行限制
        if not rate_limiter.is_allowed(token):
            logger.warning(f"[{request_id}] 用户 {token[:8]}... 超过速率限制")
            return {"error": {"message": "请求频率过高,请稍后再试", "type": "rate_limit_error", "code": "rate_limit_exceeded"}}, 429

        openai_data = request.get_json()
        if not openai_data:
            logger.error(f"[{request_id}] 请求体不是有效的JSON")
            return {"error": {"message": "请求体必须是 JSON。", "type": "invalid_request_error", "code": None}}, 400
        
        if app.config.get('DEBUG_MODE', False):
            logger.debug(f"[{request_id}] OpenAI 请求数据: {json.dumps(openai_data, indent=2, ensure_ascii=False)}")

        # 从 OpenAI 请求中提取参数
        # Capture the initial messages from the request for later use in rolling hash update
        initial_messages_from_request: List[Dict[str, str]] = openai_data.get('messages', [])
        messages: List[Dict[str, str]] = initial_messages_from_request # Keep 'messages' for existing logic
        stream_requested: bool = openai_data.get('stream', False)
        # 如果请求中没有指定模型,则使用映射表中的一个默认模型,或者最终的 DEFAULT_ENDPOINT_ID
        model_mapping = config_instance._model_mapping
        default_endpoint_id = config_instance.get('default_endpoint_id')
        requested_model_name: str = openai_data.get('model', list(model_mapping.keys())[0] if model_mapping else default_endpoint_id)
        
        # 从请求中获取参数,如果未提供则为 None
        temperature: Optional[float] = openai_data.get('temperature')
        max_tokens: Optional[int] = openai_data.get('max_tokens')
        top_p: Optional[float] = openai_data.get('top_p')
        frequency_penalty: Optional[float] = openai_data.get('frequency_penalty')
        presence_penalty: Optional[float] = openai_data.get('presence_penalty')

        if not messages:
            logger.error(f"[{request_id}] 缺少 'messages' 字段")
            return {"error": {"message": "缺少 'messages' 字段。", "type": "invalid_request_error", "code": "missing_messages"}}, 400

        # 为 on-demand.io 构建查询
        # on-demand.io 通常接受单个查询字符串,上下文由其会话管理。
        # 我们将发送最新的用户查询,可选地以系统提示为前缀。
        # --- 上下文感知会话管理与查询构建 (v2) ---

        # 1. 提取消息组件与上下文密钥
        logger.info(f"[{request_id}] DEBUG_PRE_HASH_COMPUTATION: 即将计算 request_context_hash。")
        request_context_hash = _get_context_key_from_messages(messages, request_id)
        logger.info(f"[{request_id}] 请求上下文哈希值: {repr(request_context_hash)}") # 使用 repr()

        logger.info(f"[{request_id}] DEBUG_POINT_A: 即将初始化 historical_messages。")
        historical_messages = []
        logger.info(f"[{request_id}] DEBUG_POINT_B: historical_messages 初始化为空列表。即将检查 request_context_hash ({repr(request_context_hash)}).")

        if request_context_hash: # 注意:空字符串的布尔值为 False
            logger.info(f"[{request_id}] DEBUG_POINT_C: request_context_hash ({repr(request_context_hash)}) 为真,进入历史提取块。")
            last_user_idx = -1
            try:
                for i in range(len(messages) - 1, -1, -1):
                    if messages[i].get('role') == 'user': last_user_idx = i; break
            except Exception as e_loop:
                logger.error(f"[{request_id}] DEBUG_LOOP_ERROR: 在查找 last_user_idx 的循环中发生错误: {e_loop}")
                last_user_idx = -1 # 确保安全

            logger.info(f"[{request_id}] DEBUG_POINT_D: last_user_idx = {last_user_idx}")
            if last_user_idx > 0:
                try:
                    historical_messages = messages[:last_user_idx]
                    logger.info(f"[{request_id}] DEBUG_POINT_E: historical_messages 赋值自 messages[:{last_user_idx}]")
                except Exception as e_slice:
                    logger.error(f"[{request_id}] DEBUG_SLICE_ERROR: 在切片 messages[:{last_user_idx}] 时发生错误: {e_slice}")
                    historical_messages = [] # 确保安全
            
            if historical_messages:
                logger.info(f"[{request_id}] DEBUG_HISTORICAL_CONTENT: 'historical_messages' 提取后内容: {json.dumps(historical_messages, ensure_ascii=False, indent=2)}")
            else:
                logger.info(f"[{request_id}] DEBUG_HISTORICAL_EMPTY: 'historical_messages' 提取后为空列表。last_user_idx={last_user_idx}, request_context_hash='{request_context_hash}'")
        
        elif not request_context_hash: # request_context_hash is None or empty string
             logger.info(f"[{request_id}] DEBUG_HISTORICAL_NOHASH: 'request_context_hash' ({repr(request_context_hash)}) 为假, 'historical_messages' 保持为空列表。")

        logger.info(f"[{request_id}] DEBUG_POST_HISTORICAL_EXTRACTION: 即将提取 system 和 user query。")
        current_system_prompts_contents = [msg['content'] for msg in messages if msg.get('role') == 'system' and msg.get('content')]
        system_prompt_combined = "\n".join(current_system_prompts_contents)
        
        current_user_messages_contents = [msg['content'] for msg in messages if msg.get('role') == 'user' and msg.get('content')]
        current_user_query = current_user_messages_contents[-1] if current_user_messages_contents else ""

        if not current_user_query: # 此检查至关重要
            logger.error(f"[{request_id}] 'messages' 中未找到有效的 'user' 角色的消息内容。")
            # 记录调试消息
            logger.debug(f"[{request_id}] 接收到的消息: {json.dumps(messages, ensure_ascii=False)}")
            return {"error": {"message": "'messages' 中未找到有效的 'user' 角色的消息内容。", "type": "invalid_request_error", "code": "no_user_message"}}, 400
 
        user_identifier = token
        # 记录请求开始时间,确保在所有路径中 duration_ms 可用
        request_start_time = time.time()
        ondemand_client = None
        email_for_stats = None # 此为 OnDemandAPIClient 所用账户的邮箱
        # 初始化 is_newly_assigned_context,默认为 True,如果后续阶段匹配成功会被修改
        is_newly_assigned_context = True
        
        # 获取会话超时配置
        ondemand_session_timeout_minutes = config_instance.get('ondemand_session_timeout_minutes', 30)
        logger.info(f"[{request_id}] OnDemand 会话超时设置为: {ondemand_session_timeout_minutes} 分钟。")
        # 将分钟转换为 timedelta 对象,便于比较
        session_timeout_delta = timedelta(minutes=ondemand_session_timeout_minutes)

        with config_instance.client_sessions_lock:
            current_time_dt = datetime.now() # 使用 datetime 对象进行比较
            if user_identifier not in config_instance.client_sessions:
                config_instance.client_sessions[user_identifier] = {}
            user_sessions_for_id = config_instance.client_sessions[user_identifier]

            # 阶段 0: 优先复用“活跃”会话
            # 遍历时按 last_time 降序排列,优先选择最近使用的活跃会话
            sorted_sessions = sorted(
                user_sessions_for_id.items(),
                key=lambda item: item[1].get("last_time", datetime.min),
                reverse=True
            )

            for acc_email_p0, session_data_p0 in sorted_sessions:
                client_p0 = session_data_p0.get("client")
                last_time_p0 = session_data_p0.get("last_time")

                if client_p0 and client_p0.token and client_p0.session_id and last_time_p0:
                    if (current_time_dt - last_time_p0) < session_timeout_delta: # 使用 session_timeout_delta
                        stored_active_hash = session_data_p0.get("active_context_hash")
                        hash_match_status = "匹配" if stored_active_hash == request_context_hash else "不匹配"
                        logger.info(f"[{request_id}] 阶段0: 找到账户 {acc_email_p0} 的活跃会话。请求上下文哈希 ({request_context_hash or 'None'}) 与存储哈希 ({stored_active_hash or 'None'}) {hash_match_status}。")

                        # 新增:检查上下文哈希是否匹配
                        if stored_active_hash == request_context_hash:
                            # 如果哈希匹配,则复用此客户端
                            ondemand_client = client_p0
                            email_for_stats = acc_email_p0
                            ondemand_client._associated_user_identifier = user_identifier
                            ondemand_client._associated_request_ip = client_ip
                            session_data_p0["last_time"] = current_time_dt # 使用 current_time_dt
                            session_data_p0["ip"] = client_ip
                            is_newly_assigned_context = False # 复用现有活跃会话
                            logger.info(f"[{request_id}] 阶段0: 上下文哈希匹配,复用账户 {email_for_stats} 的活跃会话。")
                            break # 已找到并复用活跃客户端
                        else:
                            logger.info(f"[{request_id}] 阶段0: 上下文哈希不匹配,跳过复用此活跃会话。")
                            # Continue the loop to check other sessions or proceed to Stage 1

            # 阶段 1: 若阶段0失败,则查找已服务此 context_hash 的客户端 (精确哈希匹配)
            if not ondemand_client and request_context_hash: # 只有在 request_context_hash 存在时才进行阶段1匹配
                for acc_email_p1, session_data_p1 in user_sessions_for_id.items(): # 无需再次排序,因为阶段0已处理最优选择
                    client_p1 = session_data_p1.get("client")
                    if client_p1 and client_p1.token and client_p1.session_id and \
                       session_data_p1.get("active_context_hash") == request_context_hash:
                        
                        # 检查此精确匹配的会话是否也“活跃”,如果不活跃,可能不如创建一个新的
                        last_time_p1 = session_data_p1.get("last_time")
                        if last_time_p1 and (current_time_dt - last_time_p1) >= session_timeout_delta: # 使用 session_timeout_delta
                            logger.info(f"[{request_id}] 阶段1: 找到精确哈希匹配的账户 {acc_email_p1},但其会话已超时。将跳过并尝试创建新会话。")
                            continue # 跳过这个超时的精确匹配

                        ondemand_client = client_p1
                        email_for_stats = acc_email_p1
                        ondemand_client._associated_user_identifier = user_identifier
                        ondemand_client._associated_request_ip = client_ip
                        session_data_p1["last_time"] = current_time_dt # 使用 current_time_dt
                        session_data_p1["ip"] = client_ip
                        is_newly_assigned_context = False # 精确上下文匹配
                        logger.info(f"[{request_id}] 阶段1: 上下文精确匹配。复用账户 {email_for_stats} 的客户端 (上下文哈希: {request_context_hash})。")
                        break # 已找到客户端
            
            # 阶段 2: 若阶段0和阶段1均失败,则必须创建新客户端会话
            if not ondemand_client:
                logger.info(f"[{request_id}] 阶段0及阶段1均未找到可复用会话 (请求上下文哈希: {request_context_hash or 'None'})。尝试获取/创建新客户端会话。")
                MAX_ACCOUNT_ATTEMPTS = config_instance.get('max_account_attempts', 3) # 从配置获取或默认3
                for attempt in range(MAX_ACCOUNT_ATTEMPTS):
                        new_ondemand_email, new_ondemand_password = config.get_next_ondemand_account_details()
                        if not new_ondemand_email:
                            logger.error(f"[{request_id}] 尝试 {attempt+1} 次后,配置中无可用 OnDemand 账户。")
                            break

                        email_for_stats = new_ondemand_email # 本次尝试暂设值
                        
                        # 检查 user_identifier 是否已对 new_ondemand_email 存在会话数据,但可能 client 实例需要重建
                        # 或者这是一个全新的账户分配给此 user_identifier
                        
                        # 总是尝试创建新的 OnDemandAPIClient 实例和新的 OnDemand session_id
                        # 因为到这一步意味着我们没有找到合适的现有活跃会话来复用其 session_id
                        logger.info(f"[{request_id}] 阶段2: 为账户 {new_ondemand_email} 创建新客户端实例和会话 (尝试 {attempt+1})。")
                        client_id_for_log = f"{user_identifier[:8]}-{new_ondemand_email.split('@')[0]}-{request_id[:4]}" # 更具区分度的 client_id
                        temp_ondemand_client = OnDemandAPIClient(new_ondemand_email, new_ondemand_password, client_id=client_id_for_log)
                        
                        if not temp_ondemand_client.sign_in() or not temp_ondemand_client.create_session():
                            logger.error(f"[{request_id}] 为 {new_ondemand_email} 初始化新客户端会话失败: {temp_ondemand_client.last_error}")
                            # 此处不将 ondemand_client 设为 None,因为 email_for_stats 需要在失败统计时使用
                            # email_for_stats = None # 移除,以确保失败统计时有邮箱
                            continue # 尝试下一账户
                        
                        ondemand_client = temp_ondemand_client # 成功创建,赋值
                        ondemand_client._associated_user_identifier = user_identifier
                        ondemand_client._associated_request_ip = client_ip
                                                 
                        user_sessions_for_id[new_ondemand_email] = {
                            "client": ondemand_client,
                            "last_time": current_time_dt, # 使用 current_time_dt
                            "ip": client_ip,
                            "active_context_hash": request_context_hash # 新会话关联到当前请求的上下文哈希
                        }
                        is_newly_assigned_context = True # 这是一个新的 OnDemand 会话,或者为现有账户分配了新的上下文
                        logger.info(f"[{request_id}] 阶段2: 已为账户 {email_for_stats} 成功创建/分配新客户端会话 (is_newly_assigned_context=True, 关联上下文哈希: {request_context_hash or 'None'})。")
                        break # 跳出账户尝试循环,客户端就绪
                
                if not ondemand_client: # 获取/创建客户端尝试均失败
                    # is_newly_assigned_context 此时应保持为 True (其默认值)
                    last_attempt_error = temp_ondemand_client.last_error if 'temp_ondemand_client' in locals() and temp_ondemand_client else '未知错误'
                    logger.error(f"[{request_id}] 尝试 {MAX_ACCOUNT_ATTEMPTS} 次后获取/创建客户端失败 (is_newly_assigned_context 保持为 {is_newly_assigned_context})。最后一次尝试失败原因: {last_attempt_error}")
                    
                    prompt_tok_val_err, _, _ = count_message_tokens(messages, requested_model_name)
                    _update_usage_statistics(
                        config_inst=config_instance, request_id=request_id, requested_model_name=requested_model_name,
                        account_email=email_for_stats, # 可能为最后尝试的邮箱或None
                        is_success=False, duration_ms=int((time.time() - request_start_time) * 1000), # request_start_time 可能未定义
                        is_stream=stream_requested, prompt_tokens_val=prompt_tok_val_err or 0,
                        completion_tokens_val=0, total_tokens_val=prompt_tok_val_err or 0,
                        error_message=f"多次尝试后获取/创建客户端会话失败。最后一次尝试失败原因: {last_attempt_error}"
                    )
                    return {"error": {"message": f"当前无法与 OnDemand 服务建立会话。最后一次尝试失败原因: {last_attempt_error}", "type": "api_error", "code": "ondemand_session_unavailable"}}, 503

        # --- 会话管理结束 ---

        # 4. 基于 is_newly_assigned_context 构建 final_query_to_ondemand
        final_query_to_ondemand = ""
        query_parts = []

        # 在构建查询之前,记录关键变量的状态
        logger.debug(f"[{request_id}] 查询构建前状态:is_newly_assigned_context={is_newly_assigned_context}, request_context_hash='{request_context_hash}', historical_messages_empty={not bool(historical_messages)}")
        if historical_messages: # 只在列表非空时尝试序列化
            logger.debug(f"[{request_id}] 查询构建前状态:historical_messages 内容: {json.dumps(historical_messages, ensure_ascii=False, indent=2)}")
        else:
            logger.debug(f"[{request_id}] 查询构建前状态:historical_messages 为空列表。")

        if is_newly_assigned_context:
            # 阶段2:新建/重分配会话
            logger.info(f"[{request_id}] 查询构建:会话为新建/重分配 (is_newly_assigned_context=True, 账户: {email_for_stats})。")
            
            # 在新建会话时,如果存在系统提示,则添加到 query_parts
            if system_prompt_combined:
                query_parts.append(f"System: {system_prompt_combined}")
                logger.debug(f"[{request_id}] 查询构建:新建会话,添加了合并的系统提示。")

            if request_context_hash and historical_messages: # 有历史上下文 (historical_messages 已在前面提取)
                logger.info(f"[{request_id}] 查询构建:存在历史上下文 ({request_context_hash}),将发送历史消息。")
                formatted_historical_parts = []
                for msg in historical_messages: # historical_messages 是 messages[:last_user_idx]
                    role = msg.get('role', 'unknown').capitalize()
                    content = msg.get('content', '')
                    if content: formatted_historical_parts.append(f"{role}: {content}")
                if formatted_historical_parts: query_parts.append("\n".join(formatted_historical_parts))
            else: # 无历史上下文 (例如对话首条消息,或 request_context_hash 为 None)
                logger.info(f"[{request_id}] 查询构建:无历史上下文。仅发送当前用户查询。") # 系统提示已在前面处理

        else:
            # 阶段0或阶段1:复用现有会话
            # 不发送 historical_messages 和 system prompt,信任 OnDemand API 通过 session_id 维护上下文
            stored_active_hash = "N/A"
            if ondemand_client: # ondemand_client 应该总是存在的,除非前面逻辑有误
                 # 尝试从 client_sessions 获取最新的哈希,因为 client 实例可能刚被更新
                client_session_data = config_instance.client_sessions.get(user_identifier, {}).get(email_for_stats, {})
                stored_active_hash = client_session_data.get('active_context_hash', 'N/A')

            hash_match_status = "匹配" if stored_active_hash == request_context_hash else "不匹配"
            logger.info(f"[{request_id}] 查询构建:复用现有会话 (is_newly_assigned_context=False, 账户: {email_for_stats})。不发送历史消息或系统提示。请求上下文哈希 ({request_context_hash or 'None'}) 与存储哈希 ({stored_active_hash or 'None'}) {hash_match_status}。")

        # 始终添加当前用户查询
        if current_user_query: # current_user_query 是 messages 中最后一个用户消息的内容
            query_parts.append(f"User: {current_user_query}")
            logger.debug(f"[{request_id}] 查询构建:添加了当前用户查询。")
        else: # 此情况应在早期被捕获 (messages 中无 user role)
            logger.error(f"[{request_id}] 严重错误: 最终查询构建时 current_user_query 为空!")
            if not query_parts: query_parts.append(" ") # 确保查询非空

        final_query_to_ondemand = "\n\n".join(filter(None, query_parts))
        if not final_query_to_ondemand.strip(): # 确保查询字符串实际有内容
            logger.warning(f"[{request_id}] 构建的查询为空或全为空格。发送占位符查询。")
            final_query_to_ondemand = " "
        
        logger.info(f"[{request_id}] 构建的 OnDemand 查询 (前1000字符): {final_query_to_ondemand[:1000]}...")

        # 根据请求的模型名称获取 on-demand.io 的 endpoint_id
        endpoint_id = model_mapping.get(requested_model_name, default_endpoint_id)
        if requested_model_name not in model_mapping:
            logger.warning(f"[{request_id}] 模型 '{requested_model_name}' 不在映射表中, 将使用默认端点 '{default_endpoint_id}'.")

        # 构建模型配置,只包含用户明确提供的参数
        model_configs = {}
        
        # 构建模型配置,只包含用户明确提供的参数 (值为None的参数不会被包含)
        if temperature is not None:
            model_configs["temperature"] = temperature
        if max_tokens is not None:
            model_configs["maxTokens"] = max_tokens
        if top_p is not None:
            model_configs["topP"] = top_p
        if frequency_penalty is not None:
            model_configs["frequency_penalty"] = frequency_penalty
        if presence_penalty is not None:
            model_configs["presence_penalty"] = presence_penalty
            
        logger.info(f"[{request_id}] 构建的模型配置: {json.dumps(model_configs, ensure_ascii=False)}")
 
        # request_start_time 已移至会话管理之前
        
        # 在调用 send_query 之前,将 request_context_hash 存储到 ondemand_client 实例上
        # 以便在 RateLimitStrategy 中进行账户切换时可以访问到它
        if ondemand_client: #确保 ondemand_client 不是 None
            ondemand_client._current_request_context_hash = request_context_hash
            logger.debug(f"[{request_id}] Stored request_context_hash ('{request_context_hash}') onto ondemand_client instance before send_query.")
        else:
            logger.error(f"[{request_id}] CRITICAL: ondemand_client is None before send_query. This should not happen.")
            # 可以在这里决定是否提前返回错误,或者让后续的 send_query 调用失败
            # 为安全起见,如果 ondemand_client 为 None,后续调用会 AttributeError

        # 使用特定于此 IP 的客户端实例向 OnDemand API 发送查询
        ondemand_result = ondemand_client.send_query(final_query_to_ondemand, endpoint_id=endpoint_id,
                                                     stream=stream_requested, model_configs_input=model_configs)
            
        # 处理响应
        if stream_requested:
            # 流式响应
            def generate_openai_stream(captured_initial_request_messages: List[Dict[str, str]]):
                full_assistant_reply_parts = [] # For aggregating streamed reply
                stream_response_obj = ondemand_result.get("response_obj")
                if not stream_response_obj:  # 确保 response_obj 存在
                    # 计算token数量(仅提示部分,因为流式响应无法准确计算完成tokens)
                    prompt_tokens, _, _ = count_message_tokens(messages, requested_model_name)
                    # 确保prompt_tokens不为None
                    if prompt_tokens is None:
                        prompt_tokens = 0
                    # 错误情况下,完成tokens为0
                    estimated_completion_tokens = 0
                    # 错误情况下,总tokens等于提示tokens
                    estimated_total_tokens = prompt_tokens
                    
                    error_json = {
                        "id": request_id,
                        "object": "chat.completion.chunk",
                        "created": int(time.time()),
                        "model": requested_model_name,
                        "choices": [{"delta": {"content": "[流错误:未获取到响应对象]"}, "index": 0, "finish_reason": "error"}],
                        "usage": {  # 添加token统计信息
                            "prompt_tokens": prompt_tokens,
                            "completion_tokens": estimated_completion_tokens,
                            "total_tokens": estimated_total_tokens
                        }
                    }
                    yield f"data: {json.dumps(error_json, ensure_ascii=False)}\n\n"
                    yield "data: [DONE]\n\n"
                    return

                logger.info(f"[{request_id}] 开始流式传输 OpenAI 格式的响应。")
                # 初始化token计数变量
                actual_input_tokens = None
                actual_output_tokens = None
                actual_total_tokens = None
                
                try:
                    for line in stream_response_obj.iter_lines():
                        if line:
                            decoded_line = line.decode('utf-8')
                            if decoded_line.startswith("data:"):
                                json_str = decoded_line[len("data:"):].strip()
                                if json_str == "[DONE]":  # 这是 on-demand.io 的结束标记
                                    break  # 我们将在循环外发送 OpenAI 的 [DONE]
                                try:
                                    event_data = json.loads(json_str)
                                    event_type = event_data.get("eventType", "")
                                    
                                    # 处理内容块
                                    if event_type == "fulfillment":
                                        content_chunk = event_data.get("answer", "")
                                        if content_chunk is not None:  # 确保 content_chunk 不是 None
                                            full_assistant_reply_parts.append(content_chunk) # Aggregate
                                            openai_chunk = {
                                                "id": request_id,
                                                "object": "chat.completion.chunk",
                                                "created": int(time.time()),
                                                "model": requested_model_name,
                                                "choices": [
                                                    {
                                                        "delta": {"content": content_chunk},
                                                        "index": 0,
                                                        "finish_reason": None  # 流式传输过程中 finish_reason 为 None
                                                    }
                                                ]
                                            }
                                            yield f"data: {json.dumps(openai_chunk, ensure_ascii=False)}\n\n"
                                    
                                    # 从metrics事件中提取准确的token计数
                                    elif event_type == "metricsLog":
                                        public_metrics = event_data.get("publicMetrics", {})
                                        if public_metrics:
                                            # 确保获取到的token计数是整数,避免None值
                                            actual_input_tokens = public_metrics.get("inputTokens", 0)
                                            if actual_input_tokens is None:
                                                actual_input_tokens = 0
                                                
                                            actual_output_tokens = public_metrics.get("outputTokens", 0)
                                            if actual_output_tokens is None:
                                                actual_output_tokens = 0
                                                
                                            actual_total_tokens = public_metrics.get("totalTokens", 0)
                                            if actual_total_tokens is None:
                                                actual_total_tokens = 0
                                                
                                            logger.info(f"[{request_id}] 从metricsLog获取到准确的token计数: 输入={actual_input_tokens}, 输出={actual_output_tokens}, 总计={actual_total_tokens}")
                                            
                                except json.JSONDecodeError:
                                    logger.warning(f"[{request_id}] 流式传输中 JSONDecodeError: {json_str}")
                                    continue  # 跳过无法解析的行
                    
                    # 如果没有从metrics中获取到准确的token计数,则使用估算方法
                    if actual_input_tokens == 0 or actual_output_tokens == 0 or actual_total_tokens == 0:
                        logger.warning(f"[{request_id}] 未从metricsLog获取到有效的token计数,使用估算方法")
                        prompt_tokens, _, _ = count_message_tokens(messages, requested_model_name)
                        # 确保prompt_tokens不为None
                        if prompt_tokens is None:
                            prompt_tokens = 0
                        estimated_completion_tokens = max(1, prompt_tokens // 2)  # 确保至少为1
                        estimated_total_tokens = prompt_tokens + estimated_completion_tokens
                    else:
                        # 使用从metrics中获取的准确token计数
                        prompt_tokens = actual_input_tokens
                        estimated_completion_tokens = actual_output_tokens
                        estimated_total_tokens = actual_total_tokens
                    
                    # 循环结束后,发送 OpenAI 流的终止块
                    final_chunk = {
                        "id": request_id,
                        "object": "chat.completion.chunk",
                        "created": int(time.time()),
                        "model": requested_model_name,
                        "choices": [{"delta": {}, "index": 0, "finish_reason": "stop"}],  # 标准的结束方式
                        "usage": {  # 添加token统计信息
                            "prompt_tokens": prompt_tokens,
                            "completion_tokens": estimated_completion_tokens,
                            "total_tokens": estimated_total_tokens
                        }
                    }
                    yield f"data: {json.dumps(final_chunk, ensure_ascii=False)}\n\n"
                    yield "data: [DONE]\n\n"  # OpenAI 流的最终结束标记
                    logger.info(f"[{request_id}] 完成 OpenAI 格式响应的流式传输。")
                    
                    full_streamed_reply = "".join(full_assistant_reply_parts)

                    # 更新使用统计
                    request_duration_val = int((time.time() - request_start_time) * 1000)
                    final_prompt_tokens_for_stats = actual_input_tokens if actual_input_tokens is not None and actual_input_tokens > 0 else prompt_tokens
                    final_completion_tokens_for_stats = actual_output_tokens if actual_output_tokens is not None and actual_output_tokens > 0 else estimated_completion_tokens
                    final_total_tokens_for_stats = actual_total_tokens if actual_total_tokens is not None and actual_total_tokens > 0 else estimated_total_tokens
                    used_actual_for_history = actual_input_tokens is not None and actual_input_tokens > 0

                    _update_usage_statistics(
                        config_inst=config_instance,
                        request_id=request_id,
                        requested_model_name=requested_model_name,
                        account_email=ondemand_client.email,
                        is_success=True,
                        duration_ms=request_duration_val,
                        is_stream=True,
                        prompt_tokens_val=final_prompt_tokens_for_stats,
                        completion_tokens_val=final_completion_tokens_for_stats,
                        total_tokens_val=final_total_tokens_for_stats,
                        prompt_length=len(final_query_to_ondemand),
                        used_actual_tokens_for_history=used_actual_for_history
                    )

                    # 更新客户端的 active_context_hash 以反映对话进展
                    _update_client_context_hash_after_reply(
                        original_request_messages=captured_initial_request_messages,
                        assistant_reply_content=full_streamed_reply,
                        request_id=request_id,
                        user_identifier=token, # user_identifier is token
                        email_for_stats=ondemand_client.email, # <--- 使用 ondemand_client 当前的 email
                        current_ondemand_client_instance=ondemand_client,
                        config_inst=config_instance,
                        logger_instance=logger
                    )
                except Exception as e:  # 捕获流处理过程中的任何异常
                    logger.error(f"[{request_id}] 流式传输过程中发生错误: {e}")
                    # 在流错误的情况下,不更新 active_context_hash,因为它可能基于不完整的对话
                    # 计算token数量(仅提示部分,因为流式响应无法准确计算完成tokens)
                    prompt_tokens, _, _ = count_message_tokens(messages, requested_model_name)
                    # 确保prompt_tokens不为None
                    if prompt_tokens is None:
                        prompt_tokens = 0
                    # 错误情况下,完成tokens为0
                    estimated_completion_tokens = 0
                    # 错误情况下,总tokens等于提示tokens
                    estimated_total_tokens = prompt_tokens
                    
                    error_json = {  # 发送一个错误块
                        "id": request_id,
                        "object": "chat.completion.chunk",
                        "created": int(time.time()),
                        "model": requested_model_name,
                        "choices": [{"delta": {"content": f"[流处理异常: {str(e)}]"}, "index": 0, "finish_reason": "error"}],
                        "usage": {  # 添加token统计信息
                            "prompt_tokens": prompt_tokens,
                            "completion_tokens": estimated_completion_tokens,
                            "total_tokens": estimated_total_tokens
                        }
                    }
                    yield f"data: {json.dumps(error_json, ensure_ascii=False)}\n\n"
                    yield "data: [DONE]\n\n"
                    
                    # 更新使用统计 - 失败的流式请求
                    request_duration_val = int((time.time() - request_start_time) * 1000)
                    _update_usage_statistics(
                        config_inst=config_instance,
                        request_id=request_id,
                        requested_model_name=requested_model_name,
                        account_email=ondemand_client.email if ondemand_client else email_for_stats,
                        is_success=False,
                        duration_ms=request_duration_val,
                        is_stream=True,
                        prompt_tokens_val=prompt_tokens if prompt_tokens is not None else 0,
                        completion_tokens_val=0,
                        total_tokens_val=prompt_tokens if prompt_tokens is not None else 0,
                        error_message=str(e)
                    )
                finally:
                    if stream_response_obj:  # 确保关闭响应对象
                        stream_response_obj.close()
 
            return Response(stream_with_context(generate_openai_stream(initial_messages_from_request)), content_type='text/event-stream; charset=utf-8')
        else:
            # 非流式响应
            final_content = ondemand_result.get("content", "")
            
            # 计算token数量
            prompt_tokens, completion_tokens, total_tokens = count_message_tokens(messages, requested_model_name)
            completion_tokens_actual = count_tokens(final_content, requested_model_name)
            total_tokens_actual = prompt_tokens + completion_tokens_actual
            
            openai_response = {
                "id": request_id,
                "object": "chat.completion",
                "created": int(time.time()),
                "model": requested_model_name,
                "choices": [
                    {
                        "message": {
                            "role": "assistant",
                            "content": final_content
                        },
                        "finish_reason": "stop",  # 假设成功完成则为 "stop"
                        "index": 0
                    }
                ],
                "usage": {  # 计算token数量
                    "prompt_tokens": prompt_tokens,
                    "completion_tokens": completion_tokens_actual,
                    "total_tokens": total_tokens_actual
                }
            }
            logger.info(f"[{request_id}] 发送非流式 OpenAI 格式的响应。")
            
            # 更新使用统计 - 非流式成功请求
            request_duration_val = int((time.time() - request_start_time) * 1000)
            _update_usage_statistics(
                config_inst=config_instance,
                request_id=request_id,
                requested_model_name=requested_model_name,
                account_email=ondemand_client.email,
                is_success=True,
                duration_ms=request_duration_val,
                is_stream=False,
                prompt_tokens_val=prompt_tokens,
                completion_tokens_val=completion_tokens_actual,
                total_tokens_val=total_tokens_actual,
                prompt_length=len(final_query_to_ondemand),
                completion_length=len(final_content) if final_content else 0,
                used_actual_tokens_for_history=True
            )

            # 更新客户端的 active_context_hash 以反映对话进展
            _update_client_context_hash_after_reply(
                original_request_messages=initial_messages_from_request,
                assistant_reply_content=final_content,
                request_id=request_id,
                user_identifier=token, # user_identifier is token
                email_for_stats=ondemand_client.email, # <--- 使用 ondemand_client 当前的 email
                current_ondemand_client_instance=ondemand_client,
                config_inst=config_instance,
                logger_instance=logger
            )
            
            return openai_response
    
    @app.route('/', methods=['GET'])
    def show_stats():
        """显示用量统计信息的HTML页面"""
        current_time = datetime.now()
        current_time_str = current_time.strftime('%Y-%m-%d %H:%M:%S')
        current_date = current_time.strftime('%Y-%m-%d')
        
        with config_instance.usage_stats_lock:
            # 复制基础统计数据
            total_requests = config_instance.usage_stats["total_requests"]
            successful_requests = config_instance.usage_stats["successful_requests"]
            failed_requests = config_instance.usage_stats["failed_requests"]
            total_prompt_tokens = config_instance.usage_stats["total_prompt_tokens"]
            total_completion_tokens = config_instance.usage_stats["total_completion_tokens"]
            total_tokens = config_instance.usage_stats["total_tokens"]
            
            # 计算成功率(整数百分比)
            success_rate = int((successful_requests / total_requests * 100) if total_requests > 0 else 0)
            
            # 计算平均响应时间
            successful_history = [req for req in config_instance.usage_stats["request_history"] if req.get('success', False)]
            total_duration = sum(req.get('duration_ms', 0) for req in successful_history)
            avg_duration = (total_duration / successful_requests) if successful_requests > 0 else 0
            
            # 计算最快响应时间
            min_duration = min([req.get('duration_ms', float('inf')) for req in successful_history]) if successful_history else 0
            
            # 计算今日请求数和增长率
            today_requests = config_instance.usage_stats["daily_usage"].get(current_date, 0)
            # 确保不会出现除以零或None值的情况
            if total_requests is None or today_requests is None:
                growth_rate = 0
            elif total_requests == today_requests or (total_requests - today_requests) <= 0:
                growth_rate = 100  # 如果所有请求都是今天的,增长率为100%
            else:
                growth_rate = (today_requests / (total_requests - today_requests) * 100)
            
            # 计算估算成本 - 使用模型价格配置
            total_cost = 0.0
            model_costs = {}  # 存储每个模型的成本
            
            # 获取请求历史中的token使用情况
            for req in successful_history:
                model_name = req.get('model', '')
                # 从配置获取模型价格
                all_model_prices = config_instance.get('model_prices', {})
                default_model_price = config_instance.get('default_model_price', {'input': 0.50 / 1000000, 'output': 2.00 / 1000000}) # 提供备用默认值
                model_price = all_model_prices.get(model_name, default_model_price)
                
                # 获取输入和输出token数量
                input_tokens = req.get('prompt_tokens', 0)
                
                # 根据是否有准确的completion_tokens字段决定使用哪个字段
                if 'completion_tokens' in req:
                    output_tokens = req.get('completion_tokens', 0)
                else:
                    output_tokens = req.get('estimated_completion_tokens', 0)
                
                # 计算此次请求的成本
                request_cost = (input_tokens * model_price['input']) + (output_tokens * model_price['output'])
                total_cost += request_cost
                
                # 累加到模型成本中
                if model_name not in model_costs:
                    model_costs[model_name] = 0
                model_costs[model_name] += request_cost
            
            # 计算平均成本
            avg_cost = (total_cost / successful_requests) if successful_requests > 0 else 0
            
            # 获取最常用模型
            model_usage = dict(config_instance.usage_stats["model_usage"])
            top_models = sorted(model_usage.items(), key=lambda x: x[1], reverse=True)
            top_model = top_models[0] if top_models else None
            
            # 构建完整的统计数据字典
            stats = {
                "total_requests": total_requests,
                "successful_requests": successful_requests,
                "failed_requests": failed_requests,
                "success_rate": success_rate,
                "avg_duration": avg_duration,
                "min_duration": min_duration,
                "today_requests": today_requests,
                "growth_rate": growth_rate,
                "total_prompt_tokens": total_prompt_tokens,
                "total_completion_tokens": total_completion_tokens,
                "total_tokens": total_tokens,
                "total_cost": total_cost,
                "avg_cost": avg_cost,
                "model_usage": model_usage,
                "model_costs": model_costs,  # 添加每个模型的成本
                "top_model": top_model,
                "model_tokens": dict(config_instance.usage_stats["model_tokens"]),
                "account_usage": dict(config_instance.usage_stats["account_usage"]),
                "daily_usage": dict(sorted(config_instance.usage_stats["daily_usage"].items(), reverse=True)[:30]),  # 最近30天
                "hourly_usage": dict(sorted(config_instance.usage_stats["hourly_usage"].items(), reverse=True)[:48]),  # 最近48小时
                "request_history": list(config_instance.usage_stats["request_history"][:50]),
                "daily_tokens": dict(sorted(config_instance.usage_stats["daily_tokens"].items(), reverse=True)[:30]),  # 最近30天
                "hourly_tokens": dict(sorted(config_instance.usage_stats["hourly_tokens"].items(), reverse=True)[:48]),  # 最近48小时
                "last_saved": config_instance.usage_stats.get("last_saved", "从未保存")
            }
        
        # 使用render_template渲染模板
        return render_template('stats.html', stats=stats, current_time=current_time_str)
    
    @app.route('/save_stats', methods=['POST'])
    def save_stats():
        """手动保存统计数据"""
        try:
            config_instance.save_stats_to_file()
            logger.info("统计数据已手动保存")
            return redirect(url_for('show_stats'))
        except Exception as e:
            logger.error(f"手动保存统计数据时出错: {e}")
            return jsonify({"status": "error", "message": str(e)}), 500