File size: 63,058 Bytes
36b7c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 |
import json
import time
import uuid
import html
import hashlib # Added import
from datetime import datetime
from typing import Dict, List, Any, Optional
from flask import request, Response, stream_with_context, jsonify, render_template, redirect, url_for, flash
from datetime import datetime
from utils import logger, generate_request_id, count_tokens, count_message_tokens
import config
from auth import RateLimiter
from client import OnDemandAPIClient
from datetime import timedelta
# 初始化速率限制器
# rate_limiter 将在 config_instance 定义后初始化
# 获取配置实例
config_instance = config.config_instance
rate_limiter = RateLimiter(config_instance.get('rate_limit_per_minute', 60)) # 从配置读取,默认为60
# 模型价格配置将从 config_instance 获取
# 默认价格也将从 config_instance 获取
def format_datetime(timestamp):
"""将ISO格式时间戳格式化为更易读的格式"""
if not timestamp or timestamp == "从未保存":
return timestamp
try:
# 处理ISO格式时间戳
if 'T' in timestamp:
dt = datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
return dt.strftime('%Y-%m-%d %H:%M:%S')
# 处理已经是格式化字符串的情况
return timestamp
except Exception:
return timestamp
def format_number(value):
"""根据数值大小自动转换单位"""
if value is None or value == '-':
return '-'
try:
value = float(value)
if value >= 1000000000000: # 万亿 (T)
return f"{value/1000000000000:.2f}T"
elif value >= 1000000000: # 十亿 (G)
return f"{value/1000000000:.2f}G"
elif value >= 1000000: # 百万 (M)
return f"{value/1000000:.2f}M"
elif value >= 1000: # 千 (K)
return f"{value/1000:.2f}K"
elif value == 0: # 零
return "0"
elif abs(value) < 0.01: # 非常小的数值,使用科学计数法
return f"{value:.2e}"
else:
return f"{value:.0f}" if value == int(value) else f"{value:.2f}"
except (ValueError, TypeError):
return str(value)
def format_duration(ms):
"""将毫秒格式化为更易读的格式"""
if ms is None or ms == '-':
return '-'
try:
ms = float(ms) # 使用float而不是int,以支持小数
if ms >= 86400000: # 超过1天 (24*60*60*1000)
return f"{ms/86400000:.2f}天"
elif ms >= 3600000: # 超过1小时 (60*60*1000)
return f"{ms/3600000:.2f}小时"
elif ms >= 60000: # 超过1分钟 (60*1000)
return f"{ms/60000:.2f}分钟"
elif ms >= 1000: # 超过1秒
return f"{ms/1000:.2f}秒"
else:
return f"{ms:.0f}" if ms == int(ms) else f"{ms:.2f}毫秒"
except (ValueError, TypeError):
return str(ms)
def _update_usage_statistics(
config_inst,
request_id: str,
requested_model_name: str,
account_email: Optional[str],
is_success: bool,
duration_ms: int,
is_stream: bool,
prompt_tokens_val: int,
completion_tokens_val: int,
total_tokens_val: int,
prompt_length: Optional[int] = None,
completion_length: Optional[int] = None,
error_message: Optional[str] = None,
used_actual_tokens_for_history: bool = False
):
"""更新使用统计与请求历史的辅助函数。"""
with config_inst.usage_stats_lock:
config_inst.usage_stats["total_requests"] += 1
current_email_for_stats = account_email if account_email else "unknown_account"
if is_success:
config_inst.usage_stats["successful_requests"] += 1
config_inst.usage_stats["model_usage"].setdefault(requested_model_name, 0)
config_inst.usage_stats["model_usage"][requested_model_name] += 1
config_inst.usage_stats["account_usage"].setdefault(current_email_for_stats, 0)
config_inst.usage_stats["account_usage"][current_email_for_stats] += 1
config_inst.usage_stats["total_prompt_tokens"] += prompt_tokens_val
config_inst.usage_stats["total_completion_tokens"] += completion_tokens_val
config_inst.usage_stats["total_tokens"] += total_tokens_val
config_inst.usage_stats["model_tokens"].setdefault(requested_model_name, 0)
config_inst.usage_stats["model_tokens"][requested_model_name] += total_tokens_val
today = datetime.now().strftime("%Y-%m-%d")
hour = datetime.now().strftime("%Y-%m-%d %H:00")
config_inst.usage_stats["daily_usage"].setdefault(today, 0)
config_inst.usage_stats["daily_usage"][today] += 1
config_inst.usage_stats["hourly_usage"].setdefault(hour, 0)
config_inst.usage_stats["hourly_usage"][hour] += 1
config_inst.usage_stats["daily_tokens"].setdefault(today, 0)
config_inst.usage_stats["daily_tokens"][today] += total_tokens_val
config_inst.usage_stats["hourly_tokens"].setdefault(hour, 0)
config_inst.usage_stats["hourly_tokens"][hour] += total_tokens_val
else:
config_inst.usage_stats["failed_requests"] += 1
history_entry = {
"id": request_id,
"timestamp": datetime.now().isoformat(),
"model": requested_model_name,
"account": current_email_for_stats,
"success": is_success,
"duration_ms": duration_ms,
"stream": is_stream,
}
if is_success:
if prompt_length is not None:
history_entry["prompt_length"] = prompt_length
if completion_length is not None:
history_entry["completion_length"] = completion_length
if is_stream:
if used_actual_tokens_for_history:
history_entry["prompt_tokens"] = prompt_tokens_val
history_entry["completion_tokens"] = completion_tokens_val
history_entry["total_tokens"] = total_tokens_val
else:
history_entry["prompt_tokens"] = prompt_tokens_val
history_entry["estimated_completion_tokens"] = completion_tokens_val
history_entry["estimated_total_tokens"] = total_tokens_val
else:
history_entry["prompt_tokens"] = prompt_tokens_val
history_entry["completion_tokens"] = completion_tokens_val
history_entry["total_tokens"] = total_tokens_val
else:
if error_message:
history_entry["error"] = error_message
if prompt_tokens_val > 0:
history_entry["prompt_tokens_attempted"] = prompt_tokens_val
config_inst.usage_stats["request_history"].append(history_entry)
max_history_items = config_inst.get('max_history_items', 1000)
if len(config_inst.usage_stats["request_history"]) > max_history_items:
config_inst.usage_stats["request_history"] = \
config_inst.usage_stats["request_history"][-max_history_items:]
def _generate_hash_for_full_history(full_messages_list: List[Dict[str, str]], req_id: str) -> Optional[str]:
"""
Generates a SHA256 hash from a list of messages, considering all messages.
"""
if not full_messages_list:
logger.debug(f"[{req_id}] (_generate_hash_for_full_history) No messages to hash.")
return None
try:
# Ensure consistent serialization for hashing
# Context meaning is only in role and content
simplified_history = [{"role": msg.get("role"), "content": msg.get("content")} for msg in full_messages_list]
serialized_history = json.dumps(simplified_history, sort_keys=True)
return hashlib.sha256(serialized_history.encode('utf-8')).hexdigest()
except (TypeError, ValueError) as e:
logger.error(f"[{req_id}] (_generate_hash_for_full_history) Failed to serialize full history messages for hashing: {e}")
return None
def _update_client_context_hash_after_reply(
original_request_messages: List[Dict[str, str]],
assistant_reply_content: str,
request_id: str,
user_identifier: str, # Corresponds to 'token' in chat_completions
email_for_stats: Optional[str],
current_ondemand_client_instance: Optional[OnDemandAPIClient],
config_inst: config.Config,
logger_instance # Pass logger directly
):
"""
Helper to update the client's active_context_hash after a successful reply
using the full conversation history up to the assistant's reply.
"""
if not assistant_reply_content or not email_for_stats or not current_ondemand_client_instance:
logger_instance.debug(f"[{request_id}] 更新客户端上下文哈希的条件不足(回复内容 '{bool(assistant_reply_content)}', 邮箱 '{email_for_stats}', 客户端实例 '{bool(current_ondemand_client_instance)}'),跳过。")
return
assistant_message = {"role": "assistant", "content": assistant_reply_content}
# original_request_messages should be the messages list as it was when the request came in.
full_history_up_to_assistant_reply = original_request_messages + [assistant_message]
next_active_context_hash = _generate_hash_for_full_history(full_history_up_to_assistant_reply, request_id)
if next_active_context_hash:
with config_inst.client_sessions_lock:
if user_identifier in config_inst.client_sessions and \
email_for_stats in config_inst.client_sessions[user_identifier]:
session_data_to_update = config_inst.client_sessions[user_identifier][email_for_stats]
client_in_session = session_data_to_update.get("client")
# DEBUGGING LOGS START
logger_instance.debug(f"[{request_id}] HASH_UPDATE_DEBUG: client_in_session id={id(client_in_session)}, email={getattr(client_in_session, 'email', 'N/A')}, session_id={getattr(client_in_session, 'session_id', 'N/A')}")
logger_instance.debug(f"[{request_id}] HASH_UPDATE_DEBUG: current_ondemand_client_instance id={id(current_ondemand_client_instance)}, email={getattr(current_ondemand_client_instance, 'email', 'N/A')}, session_id={getattr(current_ondemand_client_instance, 'session_id', 'N/A')}")
logger_instance.debug(f"[{request_id}] HASH_UPDATE_DEBUG: Comparison result (client_in_session == current_ondemand_client_instance): {client_in_session == current_ondemand_client_instance}")
logger_instance.debug(f"[{request_id}] HASH_UPDATE_DEBUG: Comparison result (client_in_session is current_ondemand_client_instance): {client_in_session is current_ondemand_client_instance}")
# DEBUGGING LOGS END
if client_in_session == current_ondemand_client_instance:
old_hash = session_data_to_update.get("active_context_hash")
session_data_to_update["active_context_hash"] = next_active_context_hash
session_data_to_update["last_time"] = datetime.now()
logger_instance.info(f"[{request_id}] 客户端 (账户: {email_for_stats}) 的 active_context_hash 已从 '{old_hash}' 更新为 '{next_active_context_hash}' 以反映对话进展。")
else:
logger_instance.warning(f"[{request_id}] 尝试更新哈希时,发现 email_for_stats '{email_for_stats}' 对应的存储客户端与当前使用的 ondemand_client 不一致。跳过更新。")
else:
logger_instance.warning(f"[{request_id}] 尝试更新哈希时,在 client_sessions 中未找到用户 '{user_identifier}' 或账户 '{email_for_stats}'。跳过更新。")
else:
logger_instance.warning(f"[{request_id}] 未能为下一次交互生成新的 active_context_hash (基于回复 '{bool(assistant_reply_content)}'). 客户端的哈希未更新。")
def _get_context_key_from_messages(messages: List[Dict[str, str]], req_id: str) -> Optional[str]:
"""
从末次用户消息前的消息列表生成上下文哈希密钥。
"""
if not messages:
logger.debug(f"[{req_id}] 无消息可供生成上下文密钥。")
return None
last_user_msg_idx = -1
for i in range(len(messages) - 1, -1, -1):
if messages[i].get('role') == 'user':
last_user_msg_idx = i
break
# 若无用户消息或用户消息为首条,则无先前历史可生成上下文密钥。
if last_user_msg_idx <= 0:
logger.debug(f"[{req_id}] 无先前历史可生成上下文密钥 (last_user_msg_idx: {last_user_msg_idx})。")
return None
historical_messages = messages[:last_user_msg_idx]
if not historical_messages: # 应由 last_user_msg_idx <= 0 捕获,此处为额外保障
logger.debug(f"[{req_id}] 上下文密钥的历史消息列表为空。")
return None
try:
# 确保哈希序列化的一致性
# 上下文意义仅关注角色和内容
simplified_history = [{"role": msg.get("role"), "content": msg.get("content")} for msg in historical_messages]
serialized_history = json.dumps(simplified_history, sort_keys=True)
return hashlib.sha256(serialized_history.encode('utf-8')).hexdigest()
except (TypeError, ValueError) as e:
logger.error(f"[{req_id}] 序列化历史消息以生成上下文密钥失败: {e}")
return None
def register_routes(app):
"""注册所有路由到Flask应用"""
# 注册自定义过滤器
app.jinja_env.filters['format_datetime'] = format_datetime
app.jinja_env.filters['format_number'] = format_number
app.jinja_env.filters['format_duration'] = format_duration
@app.route('/health', methods=['GET'])
def health_check():
"""健康检查端点,返回服务状态"""
return {"status": "ok", "message": "2API服务运行正常"}, 200
@app.route('/v1/models', methods=['GET'])
def list_models():
"""以 OpenAI 格式返回可用模型列表。"""
data = []
# 获取当前时间戳,用于 'created' 字段
created_time = int(time.time())
model_mapping = config_instance._model_mapping
for openai_name in model_mapping.keys(): # 仅列出已映射的模型
data.append({
"id": openai_name,
"object": "model",
"created": created_time,
"owned_by": "on-demand.io" # 或根据模型来源填写 "openai", "anthropic" 等
})
return {"object": "list", "data": data}
@app.route('/v1/chat/completions', methods=['POST'])
def chat_completions():
"""处理聊天补全请求,兼容 OpenAI 格式。"""
request_id = generate_request_id() # 生成唯一的请求 ID
logger.info(f"[{request_id}] CHAT_COMPLETIONS_ENTRY_POINT") # 最早的日志点
client_ip = request.remote_addr # 获取客户端 IP 地址,仅用于日志记录
logger.info(f"[{request_id}] 收到来自 IP: {client_ip} 的 /v1/chat/completions 请求")
# 尝试在更早的位置打印一些调试信息
logger.info(f"[{request_id}] DEBUG_ENTRY: 进入 chat_completions。")
# 验证访问令牌
auth_header = request.headers.get('Authorization')
if not auth_header or not auth_header.startswith('Bearer '):
logger.warning(f"[{request_id}] 未提供认证令牌或格式错误")
return {"error": {"message": "缺少有效的认证令牌", "type": "auth_error", "code": "missing_token"}}, 401
# 获取API访问令牌
api_access_token = config_instance.get('api_access_token')
token = auth_header[7:] # 去掉 'Bearer ' 前缀
if token != api_access_token:
logger.warning(f"[{request_id}] 提供了无效的认证令牌")
return {"error": {"message": "无效的认证令牌", "type": "auth_error", "code": "invalid_token"}}, 401
# 检查速率限制 - 使用token而不是IP进行限制
if not rate_limiter.is_allowed(token):
logger.warning(f"[{request_id}] 用户 {token[:8]}... 超过速率限制")
return {"error": {"message": "请求频率过高,请稍后再试", "type": "rate_limit_error", "code": "rate_limit_exceeded"}}, 429
openai_data = request.get_json()
if not openai_data:
logger.error(f"[{request_id}] 请求体不是有效的JSON")
return {"error": {"message": "请求体必须是 JSON。", "type": "invalid_request_error", "code": None}}, 400
if app.config.get('DEBUG_MODE', False):
logger.debug(f"[{request_id}] OpenAI 请求数据: {json.dumps(openai_data, indent=2, ensure_ascii=False)}")
# 从 OpenAI 请求中提取参数
# Capture the initial messages from the request for later use in rolling hash update
initial_messages_from_request: List[Dict[str, str]] = openai_data.get('messages', [])
messages: List[Dict[str, str]] = initial_messages_from_request # Keep 'messages' for existing logic
stream_requested: bool = openai_data.get('stream', False)
# 如果请求中没有指定模型,则使用映射表中的一个默认模型,或者最终的 DEFAULT_ENDPOINT_ID
model_mapping = config_instance._model_mapping
default_endpoint_id = config_instance.get('default_endpoint_id')
requested_model_name: str = openai_data.get('model', list(model_mapping.keys())[0] if model_mapping else default_endpoint_id)
# 从请求中获取参数,如果未提供则为 None
temperature: Optional[float] = openai_data.get('temperature')
max_tokens: Optional[int] = openai_data.get('max_tokens')
top_p: Optional[float] = openai_data.get('top_p')
frequency_penalty: Optional[float] = openai_data.get('frequency_penalty')
presence_penalty: Optional[float] = openai_data.get('presence_penalty')
if not messages:
logger.error(f"[{request_id}] 缺少 'messages' 字段")
return {"error": {"message": "缺少 'messages' 字段。", "type": "invalid_request_error", "code": "missing_messages"}}, 400
# 为 on-demand.io 构建查询
# on-demand.io 通常接受单个查询字符串,上下文由其会话管理。
# 我们将发送最新的用户查询,可选地以系统提示为前缀。
# --- 上下文感知会话管理与查询构建 (v2) ---
# 1. 提取消息组件与上下文密钥
logger.info(f"[{request_id}] DEBUG_PRE_HASH_COMPUTATION: 即将计算 request_context_hash。")
request_context_hash = _get_context_key_from_messages(messages, request_id)
logger.info(f"[{request_id}] 请求上下文哈希值: {repr(request_context_hash)}") # 使用 repr()
logger.info(f"[{request_id}] DEBUG_POINT_A: 即将初始化 historical_messages。")
historical_messages = []
logger.info(f"[{request_id}] DEBUG_POINT_B: historical_messages 初始化为空列表。即将检查 request_context_hash ({repr(request_context_hash)}).")
if request_context_hash: # 注意:空字符串的布尔值为 False
logger.info(f"[{request_id}] DEBUG_POINT_C: request_context_hash ({repr(request_context_hash)}) 为真,进入历史提取块。")
last_user_idx = -1
try:
for i in range(len(messages) - 1, -1, -1):
if messages[i].get('role') == 'user': last_user_idx = i; break
except Exception as e_loop:
logger.error(f"[{request_id}] DEBUG_LOOP_ERROR: 在查找 last_user_idx 的循环中发生错误: {e_loop}")
last_user_idx = -1 # 确保安全
logger.info(f"[{request_id}] DEBUG_POINT_D: last_user_idx = {last_user_idx}")
if last_user_idx > 0:
try:
historical_messages = messages[:last_user_idx]
logger.info(f"[{request_id}] DEBUG_POINT_E: historical_messages 赋值自 messages[:{last_user_idx}]")
except Exception as e_slice:
logger.error(f"[{request_id}] DEBUG_SLICE_ERROR: 在切片 messages[:{last_user_idx}] 时发生错误: {e_slice}")
historical_messages = [] # 确保安全
if historical_messages:
logger.info(f"[{request_id}] DEBUG_HISTORICAL_CONTENT: 'historical_messages' 提取后内容: {json.dumps(historical_messages, ensure_ascii=False, indent=2)}")
else:
logger.info(f"[{request_id}] DEBUG_HISTORICAL_EMPTY: 'historical_messages' 提取后为空列表。last_user_idx={last_user_idx}, request_context_hash='{request_context_hash}'")
elif not request_context_hash: # request_context_hash is None or empty string
logger.info(f"[{request_id}] DEBUG_HISTORICAL_NOHASH: 'request_context_hash' ({repr(request_context_hash)}) 为假, 'historical_messages' 保持为空列表。")
logger.info(f"[{request_id}] DEBUG_POST_HISTORICAL_EXTRACTION: 即将提取 system 和 user query。")
current_system_prompts_contents = [msg['content'] for msg in messages if msg.get('role') == 'system' and msg.get('content')]
system_prompt_combined = "\n".join(current_system_prompts_contents)
current_user_messages_contents = [msg['content'] for msg in messages if msg.get('role') == 'user' and msg.get('content')]
current_user_query = current_user_messages_contents[-1] if current_user_messages_contents else ""
if not current_user_query: # 此检查至关重要
logger.error(f"[{request_id}] 'messages' 中未找到有效的 'user' 角色的消息内容。")
# 记录调试消息
logger.debug(f"[{request_id}] 接收到的消息: {json.dumps(messages, ensure_ascii=False)}")
return {"error": {"message": "'messages' 中未找到有效的 'user' 角色的消息内容。", "type": "invalid_request_error", "code": "no_user_message"}}, 400
user_identifier = token
# 记录请求开始时间,确保在所有路径中 duration_ms 可用
request_start_time = time.time()
ondemand_client = None
email_for_stats = None # 此为 OnDemandAPIClient 所用账户的邮箱
# 初始化 is_newly_assigned_context,默认为 True,如果后续阶段匹配成功会被修改
is_newly_assigned_context = True
# 获取会话超时配置
ondemand_session_timeout_minutes = config_instance.get('ondemand_session_timeout_minutes', 30)
logger.info(f"[{request_id}] OnDemand 会话超时设置为: {ondemand_session_timeout_minutes} 分钟。")
# 将分钟转换为 timedelta 对象,便于比较
session_timeout_delta = timedelta(minutes=ondemand_session_timeout_minutes)
with config_instance.client_sessions_lock:
current_time_dt = datetime.now() # 使用 datetime 对象进行比较
if user_identifier not in config_instance.client_sessions:
config_instance.client_sessions[user_identifier] = {}
user_sessions_for_id = config_instance.client_sessions[user_identifier]
# 阶段 0: 优先复用“活跃”会话
# 遍历时按 last_time 降序排列,优先选择最近使用的活跃会话
sorted_sessions = sorted(
user_sessions_for_id.items(),
key=lambda item: item[1].get("last_time", datetime.min),
reverse=True
)
for acc_email_p0, session_data_p0 in sorted_sessions:
client_p0 = session_data_p0.get("client")
last_time_p0 = session_data_p0.get("last_time")
if client_p0 and client_p0.token and client_p0.session_id and last_time_p0:
if (current_time_dt - last_time_p0) < session_timeout_delta: # 使用 session_timeout_delta
stored_active_hash = session_data_p0.get("active_context_hash")
hash_match_status = "匹配" if stored_active_hash == request_context_hash else "不匹配"
logger.info(f"[{request_id}] 阶段0: 找到账户 {acc_email_p0} 的活跃会话。请求上下文哈希 ({request_context_hash or 'None'}) 与存储哈希 ({stored_active_hash or 'None'}) {hash_match_status}。")
# 新增:检查上下文哈希是否匹配
if stored_active_hash == request_context_hash:
# 如果哈希匹配,则复用此客户端
ondemand_client = client_p0
email_for_stats = acc_email_p0
ondemand_client._associated_user_identifier = user_identifier
ondemand_client._associated_request_ip = client_ip
session_data_p0["last_time"] = current_time_dt # 使用 current_time_dt
session_data_p0["ip"] = client_ip
is_newly_assigned_context = False # 复用现有活跃会话
logger.info(f"[{request_id}] 阶段0: 上下文哈希匹配,复用账户 {email_for_stats} 的活跃会话。")
break # 已找到并复用活跃客户端
else:
logger.info(f"[{request_id}] 阶段0: 上下文哈希不匹配,跳过复用此活跃会话。")
# Continue the loop to check other sessions or proceed to Stage 1
# 阶段 1: 若阶段0失败,则查找已服务此 context_hash 的客户端 (精确哈希匹配)
if not ondemand_client and request_context_hash: # 只有在 request_context_hash 存在时才进行阶段1匹配
for acc_email_p1, session_data_p1 in user_sessions_for_id.items(): # 无需再次排序,因为阶段0已处理最优选择
client_p1 = session_data_p1.get("client")
if client_p1 and client_p1.token and client_p1.session_id and \
session_data_p1.get("active_context_hash") == request_context_hash:
# 检查此精确匹配的会话是否也“活跃”,如果不活跃,可能不如创建一个新的
last_time_p1 = session_data_p1.get("last_time")
if last_time_p1 and (current_time_dt - last_time_p1) >= session_timeout_delta: # 使用 session_timeout_delta
logger.info(f"[{request_id}] 阶段1: 找到精确哈希匹配的账户 {acc_email_p1},但其会话已超时。将跳过并尝试创建新会话。")
continue # 跳过这个超时的精确匹配
ondemand_client = client_p1
email_for_stats = acc_email_p1
ondemand_client._associated_user_identifier = user_identifier
ondemand_client._associated_request_ip = client_ip
session_data_p1["last_time"] = current_time_dt # 使用 current_time_dt
session_data_p1["ip"] = client_ip
is_newly_assigned_context = False # 精确上下文匹配
logger.info(f"[{request_id}] 阶段1: 上下文精确匹配。复用账户 {email_for_stats} 的客户端 (上下文哈希: {request_context_hash})。")
break # 已找到客户端
# 阶段 2: 若阶段0和阶段1均失败,则必须创建新客户端会话
if not ondemand_client:
logger.info(f"[{request_id}] 阶段0及阶段1均未找到可复用会话 (请求上下文哈希: {request_context_hash or 'None'})。尝试获取/创建新客户端会话。")
MAX_ACCOUNT_ATTEMPTS = config_instance.get('max_account_attempts', 3) # 从配置获取或默认3
for attempt in range(MAX_ACCOUNT_ATTEMPTS):
new_ondemand_email, new_ondemand_password = config.get_next_ondemand_account_details()
if not new_ondemand_email:
logger.error(f"[{request_id}] 尝试 {attempt+1} 次后,配置中无可用 OnDemand 账户。")
break
email_for_stats = new_ondemand_email # 本次尝试暂设值
# 检查 user_identifier 是否已对 new_ondemand_email 存在会话数据,但可能 client 实例需要重建
# 或者这是一个全新的账户分配给此 user_identifier
# 总是尝试创建新的 OnDemandAPIClient 实例和新的 OnDemand session_id
# 因为到这一步意味着我们没有找到合适的现有活跃会话来复用其 session_id
logger.info(f"[{request_id}] 阶段2: 为账户 {new_ondemand_email} 创建新客户端实例和会话 (尝试 {attempt+1})。")
client_id_for_log = f"{user_identifier[:8]}-{new_ondemand_email.split('@')[0]}-{request_id[:4]}" # 更具区分度的 client_id
temp_ondemand_client = OnDemandAPIClient(new_ondemand_email, new_ondemand_password, client_id=client_id_for_log)
if not temp_ondemand_client.sign_in() or not temp_ondemand_client.create_session():
logger.error(f"[{request_id}] 为 {new_ondemand_email} 初始化新客户端会话失败: {temp_ondemand_client.last_error}")
# 此处不将 ondemand_client 设为 None,因为 email_for_stats 需要在失败统计时使用
# email_for_stats = None # 移除,以确保失败统计时有邮箱
continue # 尝试下一账户
ondemand_client = temp_ondemand_client # 成功创建,赋值
ondemand_client._associated_user_identifier = user_identifier
ondemand_client._associated_request_ip = client_ip
user_sessions_for_id[new_ondemand_email] = {
"client": ondemand_client,
"last_time": current_time_dt, # 使用 current_time_dt
"ip": client_ip,
"active_context_hash": request_context_hash # 新会话关联到当前请求的上下文哈希
}
is_newly_assigned_context = True # 这是一个新的 OnDemand 会话,或者为现有账户分配了新的上下文
logger.info(f"[{request_id}] 阶段2: 已为账户 {email_for_stats} 成功创建/分配新客户端会话 (is_newly_assigned_context=True, 关联上下文哈希: {request_context_hash or 'None'})。")
break # 跳出账户尝试循环,客户端就绪
if not ondemand_client: # 获取/创建客户端尝试均失败
# is_newly_assigned_context 此时应保持为 True (其默认值)
last_attempt_error = temp_ondemand_client.last_error if 'temp_ondemand_client' in locals() and temp_ondemand_client else '未知错误'
logger.error(f"[{request_id}] 尝试 {MAX_ACCOUNT_ATTEMPTS} 次后获取/创建客户端失败 (is_newly_assigned_context 保持为 {is_newly_assigned_context})。最后一次尝试失败原因: {last_attempt_error}")
prompt_tok_val_err, _, _ = count_message_tokens(messages, requested_model_name)
_update_usage_statistics(
config_inst=config_instance, request_id=request_id, requested_model_name=requested_model_name,
account_email=email_for_stats, # 可能为最后尝试的邮箱或None
is_success=False, duration_ms=int((time.time() - request_start_time) * 1000), # request_start_time 可能未定义
is_stream=stream_requested, prompt_tokens_val=prompt_tok_val_err or 0,
completion_tokens_val=0, total_tokens_val=prompt_tok_val_err or 0,
error_message=f"多次尝试后获取/创建客户端会话失败。最后一次尝试失败原因: {last_attempt_error}"
)
return {"error": {"message": f"当前无法与 OnDemand 服务建立会话。最后一次尝试失败原因: {last_attempt_error}", "type": "api_error", "code": "ondemand_session_unavailable"}}, 503
# --- 会话管理结束 ---
# 4. 基于 is_newly_assigned_context 构建 final_query_to_ondemand
final_query_to_ondemand = ""
query_parts = []
# 在构建查询之前,记录关键变量的状态
logger.debug(f"[{request_id}] 查询构建前状态:is_newly_assigned_context={is_newly_assigned_context}, request_context_hash='{request_context_hash}', historical_messages_empty={not bool(historical_messages)}")
if historical_messages: # 只在列表非空时尝试序列化
logger.debug(f"[{request_id}] 查询构建前状态:historical_messages 内容: {json.dumps(historical_messages, ensure_ascii=False, indent=2)}")
else:
logger.debug(f"[{request_id}] 查询构建前状态:historical_messages 为空列表。")
if is_newly_assigned_context:
# 阶段2:新建/重分配会话
logger.info(f"[{request_id}] 查询构建:会话为新建/重分配 (is_newly_assigned_context=True, 账户: {email_for_stats})。")
# 在新建会话时,如果存在系统提示,则添加到 query_parts
if system_prompt_combined:
query_parts.append(f"System: {system_prompt_combined}")
logger.debug(f"[{request_id}] 查询构建:新建会话,添加了合并的系统提示。")
if request_context_hash and historical_messages: # 有历史上下文 (historical_messages 已在前面提取)
logger.info(f"[{request_id}] 查询构建:存在历史上下文 ({request_context_hash}),将发送历史消息。")
formatted_historical_parts = []
for msg in historical_messages: # historical_messages 是 messages[:last_user_idx]
role = msg.get('role', 'unknown').capitalize()
content = msg.get('content', '')
if content: formatted_historical_parts.append(f"{role}: {content}")
if formatted_historical_parts: query_parts.append("\n".join(formatted_historical_parts))
else: # 无历史上下文 (例如对话首条消息,或 request_context_hash 为 None)
logger.info(f"[{request_id}] 查询构建:无历史上下文。仅发送当前用户查询。") # 系统提示已在前面处理
else:
# 阶段0或阶段1:复用现有会话
# 不发送 historical_messages 和 system prompt,信任 OnDemand API 通过 session_id 维护上下文
stored_active_hash = "N/A"
if ondemand_client: # ondemand_client 应该总是存在的,除非前面逻辑有误
# 尝试从 client_sessions 获取最新的哈希,因为 client 实例可能刚被更新
client_session_data = config_instance.client_sessions.get(user_identifier, {}).get(email_for_stats, {})
stored_active_hash = client_session_data.get('active_context_hash', 'N/A')
hash_match_status = "匹配" if stored_active_hash == request_context_hash else "不匹配"
logger.info(f"[{request_id}] 查询构建:复用现有会话 (is_newly_assigned_context=False, 账户: {email_for_stats})。不发送历史消息或系统提示。请求上下文哈希 ({request_context_hash or 'None'}) 与存储哈希 ({stored_active_hash or 'None'}) {hash_match_status}。")
# 始终添加当前用户查询
if current_user_query: # current_user_query 是 messages 中最后一个用户消息的内容
query_parts.append(f"User: {current_user_query}")
logger.debug(f"[{request_id}] 查询构建:添加了当前用户查询。")
else: # 此情况应在早期被捕获 (messages 中无 user role)
logger.error(f"[{request_id}] 严重错误: 最终查询构建时 current_user_query 为空!")
if not query_parts: query_parts.append(" ") # 确保查询非空
final_query_to_ondemand = "\n\n".join(filter(None, query_parts))
if not final_query_to_ondemand.strip(): # 确保查询字符串实际有内容
logger.warning(f"[{request_id}] 构建的查询为空或全为空格。发送占位符查询。")
final_query_to_ondemand = " "
logger.info(f"[{request_id}] 构建的 OnDemand 查询 (前1000字符): {final_query_to_ondemand[:1000]}...")
# 根据请求的模型名称获取 on-demand.io 的 endpoint_id
endpoint_id = model_mapping.get(requested_model_name, default_endpoint_id)
if requested_model_name not in model_mapping:
logger.warning(f"[{request_id}] 模型 '{requested_model_name}' 不在映射表中, 将使用默认端点 '{default_endpoint_id}'.")
# 构建模型配置,只包含用户明确提供的参数
model_configs = {}
# 构建模型配置,只包含用户明确提供的参数 (值为None的参数不会被包含)
if temperature is not None:
model_configs["temperature"] = temperature
if max_tokens is not None:
model_configs["maxTokens"] = max_tokens
if top_p is not None:
model_configs["topP"] = top_p
if frequency_penalty is not None:
model_configs["frequency_penalty"] = frequency_penalty
if presence_penalty is not None:
model_configs["presence_penalty"] = presence_penalty
logger.info(f"[{request_id}] 构建的模型配置: {json.dumps(model_configs, ensure_ascii=False)}")
# request_start_time 已移至会话管理之前
# 在调用 send_query 之前,将 request_context_hash 存储到 ondemand_client 实例上
# 以便在 RateLimitStrategy 中进行账户切换时可以访问到它
if ondemand_client: #确保 ondemand_client 不是 None
ondemand_client._current_request_context_hash = request_context_hash
logger.debug(f"[{request_id}] Stored request_context_hash ('{request_context_hash}') onto ondemand_client instance before send_query.")
else:
logger.error(f"[{request_id}] CRITICAL: ondemand_client is None before send_query. This should not happen.")
# 可以在这里决定是否提前返回错误,或者让后续的 send_query 调用失败
# 为安全起见,如果 ondemand_client 为 None,后续调用会 AttributeError
# 使用特定于此 IP 的客户端实例向 OnDemand API 发送查询
ondemand_result = ondemand_client.send_query(final_query_to_ondemand, endpoint_id=endpoint_id,
stream=stream_requested, model_configs_input=model_configs)
# 处理响应
if stream_requested:
# 流式响应
def generate_openai_stream(captured_initial_request_messages: List[Dict[str, str]]):
full_assistant_reply_parts = [] # For aggregating streamed reply
stream_response_obj = ondemand_result.get("response_obj")
if not stream_response_obj: # 确保 response_obj 存在
# 计算token数量(仅提示部分,因为流式响应无法准确计算完成tokens)
prompt_tokens, _, _ = count_message_tokens(messages, requested_model_name)
# 确保prompt_tokens不为None
if prompt_tokens is None:
prompt_tokens = 0
# 错误情况下,完成tokens为0
estimated_completion_tokens = 0
# 错误情况下,总tokens等于提示tokens
estimated_total_tokens = prompt_tokens
error_json = {
"id": request_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": requested_model_name,
"choices": [{"delta": {"content": "[流错误:未获取到响应对象]"}, "index": 0, "finish_reason": "error"}],
"usage": { # 添加token统计信息
"prompt_tokens": prompt_tokens,
"completion_tokens": estimated_completion_tokens,
"total_tokens": estimated_total_tokens
}
}
yield f"data: {json.dumps(error_json, ensure_ascii=False)}\n\n"
yield "data: [DONE]\n\n"
return
logger.info(f"[{request_id}] 开始流式传输 OpenAI 格式的响应。")
# 初始化token计数变量
actual_input_tokens = None
actual_output_tokens = None
actual_total_tokens = None
try:
for line in stream_response_obj.iter_lines():
if line:
decoded_line = line.decode('utf-8')
if decoded_line.startswith("data:"):
json_str = decoded_line[len("data:"):].strip()
if json_str == "[DONE]": # 这是 on-demand.io 的结束标记
break # 我们将在循环外发送 OpenAI 的 [DONE]
try:
event_data = json.loads(json_str)
event_type = event_data.get("eventType", "")
# 处理内容块
if event_type == "fulfillment":
content_chunk = event_data.get("answer", "")
if content_chunk is not None: # 确保 content_chunk 不是 None
full_assistant_reply_parts.append(content_chunk) # Aggregate
openai_chunk = {
"id": request_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": requested_model_name,
"choices": [
{
"delta": {"content": content_chunk},
"index": 0,
"finish_reason": None # 流式传输过程中 finish_reason 为 None
}
]
}
yield f"data: {json.dumps(openai_chunk, ensure_ascii=False)}\n\n"
# 从metrics事件中提取准确的token计数
elif event_type == "metricsLog":
public_metrics = event_data.get("publicMetrics", {})
if public_metrics:
# 确保获取到的token计数是整数,避免None值
actual_input_tokens = public_metrics.get("inputTokens", 0)
if actual_input_tokens is None:
actual_input_tokens = 0
actual_output_tokens = public_metrics.get("outputTokens", 0)
if actual_output_tokens is None:
actual_output_tokens = 0
actual_total_tokens = public_metrics.get("totalTokens", 0)
if actual_total_tokens is None:
actual_total_tokens = 0
logger.info(f"[{request_id}] 从metricsLog获取到准确的token计数: 输入={actual_input_tokens}, 输出={actual_output_tokens}, 总计={actual_total_tokens}")
except json.JSONDecodeError:
logger.warning(f"[{request_id}] 流式传输中 JSONDecodeError: {json_str}")
continue # 跳过无法解析的行
# 如果没有从metrics中获取到准确的token计数,则使用估算方法
if actual_input_tokens == 0 or actual_output_tokens == 0 or actual_total_tokens == 0:
logger.warning(f"[{request_id}] 未从metricsLog获取到有效的token计数,使用估算方法")
prompt_tokens, _, _ = count_message_tokens(messages, requested_model_name)
# 确保prompt_tokens不为None
if prompt_tokens is None:
prompt_tokens = 0
estimated_completion_tokens = max(1, prompt_tokens // 2) # 确保至少为1
estimated_total_tokens = prompt_tokens + estimated_completion_tokens
else:
# 使用从metrics中获取的准确token计数
prompt_tokens = actual_input_tokens
estimated_completion_tokens = actual_output_tokens
estimated_total_tokens = actual_total_tokens
# 循环结束后,发送 OpenAI 流的终止块
final_chunk = {
"id": request_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": requested_model_name,
"choices": [{"delta": {}, "index": 0, "finish_reason": "stop"}], # 标准的结束方式
"usage": { # 添加token统计信息
"prompt_tokens": prompt_tokens,
"completion_tokens": estimated_completion_tokens,
"total_tokens": estimated_total_tokens
}
}
yield f"data: {json.dumps(final_chunk, ensure_ascii=False)}\n\n"
yield "data: [DONE]\n\n" # OpenAI 流的最终结束标记
logger.info(f"[{request_id}] 完成 OpenAI 格式响应的流式传输。")
full_streamed_reply = "".join(full_assistant_reply_parts)
# 更新使用统计
request_duration_val = int((time.time() - request_start_time) * 1000)
final_prompt_tokens_for_stats = actual_input_tokens if actual_input_tokens is not None and actual_input_tokens > 0 else prompt_tokens
final_completion_tokens_for_stats = actual_output_tokens if actual_output_tokens is not None and actual_output_tokens > 0 else estimated_completion_tokens
final_total_tokens_for_stats = actual_total_tokens if actual_total_tokens is not None and actual_total_tokens > 0 else estimated_total_tokens
used_actual_for_history = actual_input_tokens is not None and actual_input_tokens > 0
_update_usage_statistics(
config_inst=config_instance,
request_id=request_id,
requested_model_name=requested_model_name,
account_email=ondemand_client.email,
is_success=True,
duration_ms=request_duration_val,
is_stream=True,
prompt_tokens_val=final_prompt_tokens_for_stats,
completion_tokens_val=final_completion_tokens_for_stats,
total_tokens_val=final_total_tokens_for_stats,
prompt_length=len(final_query_to_ondemand),
used_actual_tokens_for_history=used_actual_for_history
)
# 更新客户端的 active_context_hash 以反映对话进展
_update_client_context_hash_after_reply(
original_request_messages=captured_initial_request_messages,
assistant_reply_content=full_streamed_reply,
request_id=request_id,
user_identifier=token, # user_identifier is token
email_for_stats=ondemand_client.email, # <--- 使用 ondemand_client 当前的 email
current_ondemand_client_instance=ondemand_client,
config_inst=config_instance,
logger_instance=logger
)
except Exception as e: # 捕获流处理过程中的任何异常
logger.error(f"[{request_id}] 流式传输过程中发生错误: {e}")
# 在流错误的情况下,不更新 active_context_hash,因为它可能基于不完整的对话
# 计算token数量(仅提示部分,因为流式响应无法准确计算完成tokens)
prompt_tokens, _, _ = count_message_tokens(messages, requested_model_name)
# 确保prompt_tokens不为None
if prompt_tokens is None:
prompt_tokens = 0
# 错误情况下,完成tokens为0
estimated_completion_tokens = 0
# 错误情况下,总tokens等于提示tokens
estimated_total_tokens = prompt_tokens
error_json = { # 发送一个错误块
"id": request_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": requested_model_name,
"choices": [{"delta": {"content": f"[流处理异常: {str(e)}]"}, "index": 0, "finish_reason": "error"}],
"usage": { # 添加token统计信息
"prompt_tokens": prompt_tokens,
"completion_tokens": estimated_completion_tokens,
"total_tokens": estimated_total_tokens
}
}
yield f"data: {json.dumps(error_json, ensure_ascii=False)}\n\n"
yield "data: [DONE]\n\n"
# 更新使用统计 - 失败的流式请求
request_duration_val = int((time.time() - request_start_time) * 1000)
_update_usage_statistics(
config_inst=config_instance,
request_id=request_id,
requested_model_name=requested_model_name,
account_email=ondemand_client.email if ondemand_client else email_for_stats,
is_success=False,
duration_ms=request_duration_val,
is_stream=True,
prompt_tokens_val=prompt_tokens if prompt_tokens is not None else 0,
completion_tokens_val=0,
total_tokens_val=prompt_tokens if prompt_tokens is not None else 0,
error_message=str(e)
)
finally:
if stream_response_obj: # 确保关闭响应对象
stream_response_obj.close()
return Response(stream_with_context(generate_openai_stream(initial_messages_from_request)), content_type='text/event-stream; charset=utf-8')
else:
# 非流式响应
final_content = ondemand_result.get("content", "")
# 计算token数量
prompt_tokens, completion_tokens, total_tokens = count_message_tokens(messages, requested_model_name)
completion_tokens_actual = count_tokens(final_content, requested_model_name)
total_tokens_actual = prompt_tokens + completion_tokens_actual
openai_response = {
"id": request_id,
"object": "chat.completion",
"created": int(time.time()),
"model": requested_model_name,
"choices": [
{
"message": {
"role": "assistant",
"content": final_content
},
"finish_reason": "stop", # 假设成功完成则为 "stop"
"index": 0
}
],
"usage": { # 计算token数量
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens_actual,
"total_tokens": total_tokens_actual
}
}
logger.info(f"[{request_id}] 发送非流式 OpenAI 格式的响应。")
# 更新使用统计 - 非流式成功请求
request_duration_val = int((time.time() - request_start_time) * 1000)
_update_usage_statistics(
config_inst=config_instance,
request_id=request_id,
requested_model_name=requested_model_name,
account_email=ondemand_client.email,
is_success=True,
duration_ms=request_duration_val,
is_stream=False,
prompt_tokens_val=prompt_tokens,
completion_tokens_val=completion_tokens_actual,
total_tokens_val=total_tokens_actual,
prompt_length=len(final_query_to_ondemand),
completion_length=len(final_content) if final_content else 0,
used_actual_tokens_for_history=True
)
# 更新客户端的 active_context_hash 以反映对话进展
_update_client_context_hash_after_reply(
original_request_messages=initial_messages_from_request,
assistant_reply_content=final_content,
request_id=request_id,
user_identifier=token, # user_identifier is token
email_for_stats=ondemand_client.email, # <--- 使用 ondemand_client 当前的 email
current_ondemand_client_instance=ondemand_client,
config_inst=config_instance,
logger_instance=logger
)
return openai_response
@app.route('/', methods=['GET'])
def show_stats():
"""显示用量统计信息的HTML页面"""
current_time = datetime.now()
current_time_str = current_time.strftime('%Y-%m-%d %H:%M:%S')
current_date = current_time.strftime('%Y-%m-%d')
with config_instance.usage_stats_lock:
# 复制基础统计数据
total_requests = config_instance.usage_stats["total_requests"]
successful_requests = config_instance.usage_stats["successful_requests"]
failed_requests = config_instance.usage_stats["failed_requests"]
total_prompt_tokens = config_instance.usage_stats["total_prompt_tokens"]
total_completion_tokens = config_instance.usage_stats["total_completion_tokens"]
total_tokens = config_instance.usage_stats["total_tokens"]
# 计算成功率(整数百分比)
success_rate = int((successful_requests / total_requests * 100) if total_requests > 0 else 0)
# 计算平均响应时间
successful_history = [req for req in config_instance.usage_stats["request_history"] if req.get('success', False)]
total_duration = sum(req.get('duration_ms', 0) for req in successful_history)
avg_duration = (total_duration / successful_requests) if successful_requests > 0 else 0
# 计算最快响应时间
min_duration = min([req.get('duration_ms', float('inf')) for req in successful_history]) if successful_history else 0
# 计算今日请求数和增长率
today_requests = config_instance.usage_stats["daily_usage"].get(current_date, 0)
# 确保不会出现除以零或None值的情况
if total_requests is None or today_requests is None:
growth_rate = 0
elif total_requests == today_requests or (total_requests - today_requests) <= 0:
growth_rate = 100 # 如果所有请求都是今天的,增长率为100%
else:
growth_rate = (today_requests / (total_requests - today_requests) * 100)
# 计算估算成本 - 使用模型价格配置
total_cost = 0.0
model_costs = {} # 存储每个模型的成本
# 获取请求历史中的token使用情况
for req in successful_history:
model_name = req.get('model', '')
# 从配置获取模型价格
all_model_prices = config_instance.get('model_prices', {})
default_model_price = config_instance.get('default_model_price', {'input': 0.50 / 1000000, 'output': 2.00 / 1000000}) # 提供备用默认值
model_price = all_model_prices.get(model_name, default_model_price)
# 获取输入和输出token数量
input_tokens = req.get('prompt_tokens', 0)
# 根据是否有准确的completion_tokens字段决定使用哪个字段
if 'completion_tokens' in req:
output_tokens = req.get('completion_tokens', 0)
else:
output_tokens = req.get('estimated_completion_tokens', 0)
# 计算此次请求的成本
request_cost = (input_tokens * model_price['input']) + (output_tokens * model_price['output'])
total_cost += request_cost
# 累加到模型成本中
if model_name not in model_costs:
model_costs[model_name] = 0
model_costs[model_name] += request_cost
# 计算平均成本
avg_cost = (total_cost / successful_requests) if successful_requests > 0 else 0
# 获取最常用模型
model_usage = dict(config_instance.usage_stats["model_usage"])
top_models = sorted(model_usage.items(), key=lambda x: x[1], reverse=True)
top_model = top_models[0] if top_models else None
# 构建完整的统计数据字典
stats = {
"total_requests": total_requests,
"successful_requests": successful_requests,
"failed_requests": failed_requests,
"success_rate": success_rate,
"avg_duration": avg_duration,
"min_duration": min_duration,
"today_requests": today_requests,
"growth_rate": growth_rate,
"total_prompt_tokens": total_prompt_tokens,
"total_completion_tokens": total_completion_tokens,
"total_tokens": total_tokens,
"total_cost": total_cost,
"avg_cost": avg_cost,
"model_usage": model_usage,
"model_costs": model_costs, # 添加每个模型的成本
"top_model": top_model,
"model_tokens": dict(config_instance.usage_stats["model_tokens"]),
"account_usage": dict(config_instance.usage_stats["account_usage"]),
"daily_usage": dict(sorted(config_instance.usage_stats["daily_usage"].items(), reverse=True)[:30]), # 最近30天
"hourly_usage": dict(sorted(config_instance.usage_stats["hourly_usage"].items(), reverse=True)[:48]), # 最近48小时
"request_history": list(config_instance.usage_stats["request_history"][:50]),
"daily_tokens": dict(sorted(config_instance.usage_stats["daily_tokens"].items(), reverse=True)[:30]), # 最近30天
"hourly_tokens": dict(sorted(config_instance.usage_stats["hourly_tokens"].items(), reverse=True)[:48]), # 最近48小时
"last_saved": config_instance.usage_stats.get("last_saved", "从未保存")
}
# 使用render_template渲染模板
return render_template('stats.html', stats=stats, current_time=current_time_str)
@app.route('/save_stats', methods=['POST'])
def save_stats():
"""手动保存统计数据"""
try:
config_instance.save_stats_to_file()
logger.info("统计数据已手动保存")
return redirect(url_for('show_stats'))
except Exception as e:
logger.error(f"手动保存统计数据时出错: {e}")
return jsonify({"status": "error", "message": str(e)}), 500 |