Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
import math
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
from PIL import Image
|
8 |
+
import torchvision.transforms as T
|
9 |
+
from torchvision.transforms.functional import InterpolationMode
|
10 |
+
from transformers import AutoModel, AutoTokenizer, AutoConfig
|
11 |
+
|
12 |
+
# =============================================================================
|
13 |
+
# InternVL‑3 preprocessing utilities (image‑only version)
|
14 |
+
# =============================================================================
|
15 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
16 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
17 |
+
|
18 |
+
|
19 |
+
def build_transform(input_size: int = 448):
|
20 |
+
"""Return torchvision transform matching InternVL pre‑training."""
|
21 |
+
return T.Compose(
|
22 |
+
[
|
23 |
+
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
|
24 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
25 |
+
T.ToTensor(),
|
26 |
+
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD),
|
27 |
+
]
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
32 |
+
best_ratio_diff = float("inf")
|
33 |
+
best_ratio = (1, 1)
|
34 |
+
area = width * height
|
35 |
+
for ratio in target_ratios:
|
36 |
+
tgt_ar = ratio[0] / ratio[1]
|
37 |
+
diff = abs(aspect_ratio - tgt_ar)
|
38 |
+
if diff < best_ratio_diff or (diff == best_ratio_diff and area > 0.5 * image_size * image_size * ratio[0] * ratio[1]):
|
39 |
+
best_ratio_diff = diff
|
40 |
+
best_ratio = ratio
|
41 |
+
return best_ratio
|
42 |
+
|
43 |
+
|
44 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
45 |
+
"""Split arbitrarily‑sized image into ≤12 tiles sized 448×448 (InternVL spec)."""
|
46 |
+
ow, oh = image.size
|
47 |
+
aspect_ratio = ow / oh
|
48 |
+
target_ratios = sorted(
|
49 |
+
{(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if min_num <= i * j <= max_num},
|
50 |
+
key=lambda x: x[0] * x[1],
|
51 |
+
)
|
52 |
+
ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, ow, oh, image_size)
|
53 |
+
tw, th = image_size * ratio[0], image_size * ratio[1]
|
54 |
+
blocks = ratio[0] * ratio[1]
|
55 |
+
resized = image.resize((tw, th))
|
56 |
+
tiles = [
|
57 |
+
resized.crop(
|
58 |
+
(
|
59 |
+
(idx % (tw // image_size)) * image_size,
|
60 |
+
(idx // (tw // image_size)) * image_size,
|
61 |
+
((idx % (tw // image_size)) + 1) * image_size,
|
62 |
+
((idx // (tw // image_size)) + 1) * image_size,
|
63 |
+
)
|
64 |
+
)
|
65 |
+
for idx in range(blocks)
|
66 |
+
]
|
67 |
+
if use_thumbnail and blocks != 1:
|
68 |
+
tiles.append(image.resize((image_size, image_size)))
|
69 |
+
return tiles
|
70 |
+
|
71 |
+
|
72 |
+
def load_image(path: str, input_size: int = 448, max_num: int = 12):
|
73 |
+
"""Return tensor of shape (N, 3, H, W) ready for InternVL."""
|
74 |
+
img = Image.open(path).convert("RGB")
|
75 |
+
transform = build_transform(input_size)
|
76 |
+
tiles = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
77 |
+
return torch.stack([transform(t) for t in tiles])
|
78 |
+
|
79 |
+
|
80 |
+
# =============================================================================
|
81 |
+
# InternVL‑3‑14B model loading (multi‑GPU aware)
|
82 |
+
# =============================================================================
|
83 |
+
MODEL_ID = "OpenGVLab/InternVL3-14B"
|
84 |
+
|
85 |
+
|
86 |
+
def split_model(model_name: str):
|
87 |
+
"""Distribute LLM layers across GPUs, keeping vision encoder on GPU 0."""
|
88 |
+
n_gpu = torch.cuda.device_count()
|
89 |
+
if n_gpu < 2:
|
90 |
+
return "auto" # let transformers decide
|
91 |
+
|
92 |
+
cfg = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
93 |
+
n_layers = cfg.llm_config.num_hidden_layers # type: ignore[attr-defined]
|
94 |
+
|
95 |
+
# GPU0 does vision + some text layers => treat as 0.5 GPU
|
96 |
+
per_gpu = math.ceil(n_layers / (n_gpu - 0.5))
|
97 |
+
alloc = [per_gpu] * n_gpu
|
98 |
+
alloc[0] = math.ceil(alloc[0] * 0.5)
|
99 |
+
|
100 |
+
dmap = {
|
101 |
+
"vision_model": 0,
|
102 |
+
"mlp1": 0,
|
103 |
+
"language_model.model.tok_embeddings": 0,
|
104 |
+
"language_model.model.embed_tokens": 0,
|
105 |
+
"language_model.output": 0,
|
106 |
+
"language_model.model.norm": 0,
|
107 |
+
"language_model.model.rotary_emb": 0,
|
108 |
+
"language_model.lm_head": 0,
|
109 |
+
}
|
110 |
+
layer_idx = 0
|
111 |
+
for gpu, n in enumerate(alloc):
|
112 |
+
for _ in range(n):
|
113 |
+
if layer_idx >= n_layers:
|
114 |
+
break
|
115 |
+
dmap[f"language_model.model.layers.{layer_idx}"] = 0 if layer_idx == n_layers - 1 else gpu
|
116 |
+
layer_idx += 1
|
117 |
+
return dmap
|
118 |
+
|
119 |
+
|
120 |
+
device_map = split_model(MODEL_ID)
|
121 |
+
|
122 |
+
model = AutoModel.from_pretrained(
|
123 |
+
MODEL_ID,
|
124 |
+
torch_dtype=torch.bfloat16,
|
125 |
+
low_cpu_mem_usage=True,
|
126 |
+
use_flash_attn=True,
|
127 |
+
trust_remote_code=True,
|
128 |
+
device_map=device_map,
|
129 |
+
).eval()
|
130 |
+
|
131 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, use_fast=False)
|
132 |
+
|
133 |
+
|
134 |
+
# =============================================================================
|
135 |
+
# Inference function (image‑only)
|
136 |
+
# =============================================================================
|
137 |
+
@spaces.GPU
|
138 |
+
def internvl_inference(image_path: str | None, text_input: str | None = None):
|
139 |
+
if image_path is None:
|
140 |
+
return "Please upload an image first."
|
141 |
+
pixel_values = load_image(image_path, max_num=12).to(torch.bfloat16).cuda()
|
142 |
+
prompt = f"<image>\n{text_input}" if text_input else "<image>\n"
|
143 |
+
gen_cfg = dict(max_new_tokens=1024, do_sample=True)
|
144 |
+
return model.chat(tokenizer, pixel_values, prompt, gen_cfg)
|
145 |
+
|
146 |
+
|
147 |
+
# =============================================================================
|
148 |
+
# Gradio UI (image‑only, Gradio 5 compatible)
|
149 |
+
# =============================================================================
|
150 |
+
DESCRIPTION = (
|
151 |
+
"[InternVL 3‑14B demo](https://huggingface.co/OpenGVLab/InternVL3-14B) — "
|
152 |
+
"upload an image and ask anything about it."
|
153 |
+
)
|
154 |
+
|
155 |
+
css = """
|
156 |
+
#output_text {
|
157 |
+
height: 500px;
|
158 |
+
overflow: auto;
|
159 |
+
border: 1px solid #ccc;
|
160 |
+
}
|
161 |
+
"""
|
162 |
+
|
163 |
+
with gr.Blocks(css=css, theme="origin") as demo:
|
164 |
+
gr.Markdown(DESCRIPTION)
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
# Left column: image, question, submit button (stacked vertically)
|
168 |
+
with gr.Column(scale=1):
|
169 |
+
input_image = gr.Image(label="Upload Image", type="filepath")
|
170 |
+
text_input = gr.Textbox(label="Question")
|
171 |
+
submit_btn = gr.Button("Submit")
|
172 |
+
# Right column: model output
|
173 |
+
with gr.Column(scale=1):
|
174 |
+
output_text = gr.Textbox(label="Model Output", elem_id="output_text")
|
175 |
+
|
176 |
+
submit_btn.click(internvl_inference, [input_image, text_input], [output_text])
|
177 |
+
|
178 |
+
if __name__ == "__main__":
|
179 |
+
demo.launch()
|