Spaces:
Running
on
Zero
Running
on
Zero
markany-yhkwon
commited on
Commit
·
4a72a2c
1
Parent(s):
5bccb37
bug fix
Browse files
app.py
CHANGED
@@ -33,13 +33,13 @@ ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
|
33 |
ckpt_filenmae = "groundingdino_swinb_cogcoor.pth"
|
34 |
|
35 |
|
36 |
-
def load_model_hf(model_config_path, repo_id, filename, device='
|
37 |
args = SLConfig.fromfile(model_config_path)
|
38 |
model = build_model(args)
|
39 |
args.device = device
|
40 |
|
41 |
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
42 |
-
checkpoint = torch.load(cache_file, map_location=
|
43 |
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
44 |
print("Model loaded from {} \n => {}".format(cache_file, log))
|
45 |
_ = model.eval()
|
@@ -72,7 +72,7 @@ def run_grounding(input_image, grounding_caption, box_threshold, text_threshold)
|
|
72 |
image_pil: Image = image_transform_grounding_for_vis(init_image)
|
73 |
|
74 |
# run grounidng
|
75 |
-
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='
|
76 |
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
|
77 |
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
78 |
|
@@ -96,7 +96,7 @@ if __name__ == "__main__":
|
|
96 |
with gr.Blocks(css=css) as demo:
|
97 |
gr.Markdown("<h1><center>Grounding DINO<h1><center>")
|
98 |
gr.Markdown("<h3><center>Open-World Detection with <a href='https://github.com/IDEA-Research/GroundingDINO'>Grounding DINO</a><h3><center>")
|
99 |
-
gr.Markdown("<h3><center>
|
100 |
|
101 |
with gr.Row():
|
102 |
with gr.Column():
|
|
|
33 |
ckpt_filenmae = "groundingdino_swinb_cogcoor.pth"
|
34 |
|
35 |
|
36 |
+
def load_model_hf(model_config_path, repo_id, filename, device='cuda'):
|
37 |
args = SLConfig.fromfile(model_config_path)
|
38 |
model = build_model(args)
|
39 |
args.device = device
|
40 |
|
41 |
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
42 |
+
checkpoint = torch.load(cache_file, map_location=device)
|
43 |
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
44 |
print("Model loaded from {} \n => {}".format(cache_file, log))
|
45 |
_ = model.eval()
|
|
|
72 |
image_pil: Image = image_transform_grounding_for_vis(init_image)
|
73 |
|
74 |
# run grounidng
|
75 |
+
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cuda')
|
76 |
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
|
77 |
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
78 |
|
|
|
96 |
with gr.Blocks(css=css) as demo:
|
97 |
gr.Markdown("<h1><center>Grounding DINO<h1><center>")
|
98 |
gr.Markdown("<h3><center>Open-World Detection with <a href='https://github.com/IDEA-Research/GroundingDINO'>Grounding DINO</a><h3><center>")
|
99 |
+
gr.Markdown("<h3><center>Running on GPU for faster inference<h3><center>")
|
100 |
|
101 |
with gr.Row():
|
102 |
with gr.Column():
|