File size: 5,998 Bytes
5bccb37
55b6378
382c1fc
 
 
 
5bccb37
382c1fc
 
 
 
 
014228c
 
 
 
382c1fc
014228c
 
382c1fc
014228c
 
 
 
382c1fc
55b6378
382c1fc
9be9c3b
 
 
 
 
 
382c1fc
014228c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382c1fc
 
 
 
 
 
 
 
88b7365
382c1fc
 
 
 
 
 
 
88b7365
795585e
382c1fc
 
 
 
9be9c3b
014228c
88b7365
 
 
 
014228c
88b7365
 
 
 
 
 
382c1fc
 
88b7365
 
c235e67
88b7365
382c1fc
88b7365
 
 
 
 
 
 
014228c
 
 
 
88b7365
 
 
 
 
 
014228c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import spaces
import argparse
import cv2
from PIL import Image
import numpy as np


import warnings
import torch
warnings.filterwarnings("ignore")

# Replace custom imports with Transformers
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
# Add supervision for better visualization
import supervision as sv

# Model ID for Hugging Face
model_id = "IDEA-Research/grounding-dino-base"

# Load model and processor using Transformers
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)

@spaces.GPU
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
    # Convert numpy array to PIL Image if needed
    if isinstance(input_image, np.ndarray):
        if input_image.ndim == 3:
            input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
        input_image = Image.fromarray(input_image)
    
    init_image = input_image.convert("RGB")
    
    # Process input using transformers
    inputs = processor(images=init_image, text=grounding_caption, return_tensors="pt").to(device)
    
    # Run inference
    with torch.no_grad():
        outputs = model(**inputs)
    
    # Post-process results
    results = processor.post_process_grounded_object_detection(
        outputs,
        inputs.input_ids,
        box_threshold=box_threshold,
        text_threshold=text_threshold,
        target_sizes=[init_image.size[::-1]]
    )
    
    result = results[0]
    
    # Convert image for supervision visualization
    image_np = np.array(init_image)
    
    # Create detections for supervision
    boxes = []
    labels = []
    confidences = []
    class_ids = []
    
    for i, (box, score, label) in enumerate(zip(result["boxes"], result["scores"], result["labels"])):
        # Convert box to xyxy format
        xyxy = box.tolist()
        boxes.append(xyxy)
        labels.append(label)
        confidences.append(float(score))
        class_ids.append(i)  # Use index as class_id (integer)
    
    # Create Detections object for supervision
    if boxes:
        detections = sv.Detections(
            xyxy=np.array(boxes),
            confidence=np.array(confidences),
            class_id=np.array(class_ids, dtype=np.int32),  # Ensure it's an integer array
        )
        
        text_scale = sv.calculate_optimal_text_scale(resolution_wh=init_image.size)
        line_thickness = sv.calculate_optimal_line_thickness(resolution_wh=init_image.size)
    
        # Create annotators
        box_annotator = sv.BoxAnnotator(
            thickness=2,
            color=sv.ColorPalette.DEFAULT,
        )
        
        label_annotator = sv.LabelAnnotator(
            color=sv.ColorPalette.DEFAULT,
            text_color=sv.Color.WHITE,
            text_scale=text_scale,
            text_thickness=line_thickness,
            text_padding=3
        )
        
        # Create formatted labels for each detection
        formatted_labels = [
            f"{label}: {conf:.2f}" 
            for label, conf in zip(labels, confidences)
        ]
        
        # Apply annotations to the image
        annotated_image = box_annotator.annotate(scene=image_np, detections=detections)
        annotated_image = label_annotator.annotate(
            scene=annotated_image, 
            detections=detections, 
            labels=formatted_labels
        )
    else:
        annotated_image = image_np
    
    # Convert back to PIL Image
    image_with_box = Image.fromarray(annotated_image)
    
    return image_with_box

if __name__ == "__main__":
    
    parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True)
    parser.add_argument("--debug", action="store_true", help="using debug mode")
    parser.add_argument("--share", action="store_true", help="share the app")
    args = parser.parse_args()
    
    css = """
  #mkd {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""
    with gr.Blocks(css=css) as demo:
        gr.Markdown("<h1><center>Grounding DINO Base<h1><center>")
        gr.Markdown("<h3><center>Open-World Detection with <a href='https://github.com/IDEA-Research/GroundingDINO'>Grounding DINO</a><h3><center>")

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", type="pil")
                grounding_caption = gr.Textbox(label="Detection Prompt(VERY important: text queries need to be lowercased + end with a dot, example: a cat. a remote control.)", value="a person. a car.")
                run_button = gr.Button("Run")
                
                with gr.Accordion("Advanced options", open=False):
                    box_threshold = gr.Slider(
                        minimum=0.0, maximum=1.0, value=0.3, step=0.001, 
                        label="Box Threshold"
                    )
                    text_threshold = gr.Slider(
                        minimum=0.0, maximum=1.0, value=0.25, step=0.001, 
                        label="Text Threshold"
                    )

            with gr.Column():
                gallery = gr.Image(
                    label="Detection Result",
                    type="pil"
                )

        run_button.click(
            fn=run_grounding, 
            inputs=[input_image, grounding_caption, box_threshold, text_threshold], 
            outputs=[gallery]
        )
        
        gr.Examples(
            examples=[
                ["000000039769.jpg", "a cat. a remote control.", 0.3, 0.25],
                ["KakaoTalk_20250430_163200504.jpg", "cup. screen. hand.", 0.3, 0.25]
                ],
            inputs=[input_image, grounding_caption, box_threshold, text_threshold],
            outputs=[gallery],
            fn=run_grounding,
            cache_examples=True,
        )
    
    demo.launch(share=args.share, debug=args.debug, show_error=True)