Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,998 Bytes
5bccb37 55b6378 382c1fc 5bccb37 382c1fc 014228c 382c1fc 014228c 382c1fc 014228c 382c1fc 55b6378 382c1fc 9be9c3b 382c1fc 014228c 382c1fc 88b7365 382c1fc 88b7365 795585e 382c1fc 9be9c3b 014228c 88b7365 014228c 88b7365 382c1fc 88b7365 c235e67 88b7365 382c1fc 88b7365 014228c 88b7365 014228c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import spaces
import argparse
import cv2
from PIL import Image
import numpy as np
import warnings
import torch
warnings.filterwarnings("ignore")
# Replace custom imports with Transformers
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
# Add supervision for better visualization
import supervision as sv
# Model ID for Hugging Face
model_id = "IDEA-Research/grounding-dino-base"
# Load model and processor using Transformers
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
@spaces.GPU
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
# Convert numpy array to PIL Image if needed
if isinstance(input_image, np.ndarray):
if input_image.ndim == 3:
input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
input_image = Image.fromarray(input_image)
init_image = input_image.convert("RGB")
# Process input using transformers
inputs = processor(images=init_image, text=grounding_caption, return_tensors="pt").to(device)
# Run inference
with torch.no_grad():
outputs = model(**inputs)
# Post-process results
results = processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=box_threshold,
text_threshold=text_threshold,
target_sizes=[init_image.size[::-1]]
)
result = results[0]
# Convert image for supervision visualization
image_np = np.array(init_image)
# Create detections for supervision
boxes = []
labels = []
confidences = []
class_ids = []
for i, (box, score, label) in enumerate(zip(result["boxes"], result["scores"], result["labels"])):
# Convert box to xyxy format
xyxy = box.tolist()
boxes.append(xyxy)
labels.append(label)
confidences.append(float(score))
class_ids.append(i) # Use index as class_id (integer)
# Create Detections object for supervision
if boxes:
detections = sv.Detections(
xyxy=np.array(boxes),
confidence=np.array(confidences),
class_id=np.array(class_ids, dtype=np.int32), # Ensure it's an integer array
)
text_scale = sv.calculate_optimal_text_scale(resolution_wh=init_image.size)
line_thickness = sv.calculate_optimal_line_thickness(resolution_wh=init_image.size)
# Create annotators
box_annotator = sv.BoxAnnotator(
thickness=2,
color=sv.ColorPalette.DEFAULT,
)
label_annotator = sv.LabelAnnotator(
color=sv.ColorPalette.DEFAULT,
text_color=sv.Color.WHITE,
text_scale=text_scale,
text_thickness=line_thickness,
text_padding=3
)
# Create formatted labels for each detection
formatted_labels = [
f"{label}: {conf:.2f}"
for label, conf in zip(labels, confidences)
]
# Apply annotations to the image
annotated_image = box_annotator.annotate(scene=image_np, detections=detections)
annotated_image = label_annotator.annotate(
scene=annotated_image,
detections=detections,
labels=formatted_labels
)
else:
annotated_image = image_np
# Convert back to PIL Image
image_with_box = Image.fromarray(annotated_image)
return image_with_box
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
args = parser.parse_args()
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("<h1><center>Grounding DINO Base<h1><center>")
gr.Markdown("<h3><center>Open-World Detection with <a href='https://github.com/IDEA-Research/GroundingDINO'>Grounding DINO</a><h3><center>")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
grounding_caption = gr.Textbox(label="Detection Prompt(VERY important: text queries need to be lowercased + end with a dot, example: a cat. a remote control.)", value="a person. a car.")
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.3, step=0.001,
label="Box Threshold"
)
text_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.25, step=0.001,
label="Text Threshold"
)
with gr.Column():
gallery = gr.Image(
label="Detection Result",
type="pil"
)
run_button.click(
fn=run_grounding,
inputs=[input_image, grounding_caption, box_threshold, text_threshold],
outputs=[gallery]
)
gr.Examples(
examples=[
["000000039769.jpg", "a cat. a remote control.", 0.3, 0.25],
["KakaoTalk_20250430_163200504.jpg", "cup. screen. hand.", 0.3, 0.25]
],
inputs=[input_image, grounding_caption, box_threshold, text_threshold],
outputs=[gallery],
fn=run_grounding,
cache_examples=True,
)
demo.launch(share=args.share, debug=args.debug, show_error=True) |