""" " Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR) Copyright(c) 2023 lyuwenyu. All Rights Reserved. """ import PIL import numpy as np import torch import torch.utils.data import torchvision from typing import List, Dict torchvision.disable_beta_transforms_warning() __all__ = ["show_sample", "save_samples"] def save_samples(samples: torch.Tensor, targets: List[Dict], output_dir: str, split: str, normalized: bool, box_fmt: str): ''' normalized: whether the boxes are normalized to [0, 1] box_fmt: 'xyxy', 'xywh', 'cxcywh', D-FINE uses 'cxcywh' for training, 'xyxy' for validation ''' from torchvision.transforms.functional import to_pil_image from torchvision.ops import box_convert from pathlib import Path from PIL import ImageDraw, ImageFont import os os.makedirs(Path(output_dir) / Path(f"{split}_samples"), exist_ok=True) # Predefined colors (standard color names recognized by PIL) BOX_COLORS = [ "red", "blue", "green", "orange", "purple", "cyan", "magenta", "yellow", "lime", "pink", "teal", "lavender", "brown", "beige", "maroon", "navy", "olive", "coral", "turquoise", "gold" ] LABEL_TEXT_COLOR = "white" font = ImageFont.load_default() font.size = 32 for i, (sample, target) in enumerate(zip(samples, targets)): sample_visualization = sample.clone().cpu() target_boxes = target["boxes"].clone().cpu() target_labels = target["labels"].clone().cpu() target_image_id = target["image_id"].item() target_image_path = target["image_path"] target_image_path_stem = Path(target_image_path).stem sample_visualization = to_pil_image(sample_visualization) sample_visualization_w, sample_visualization_h = sample_visualization.size # normalized to pixel space if normalized: target_boxes[:, 0] = target_boxes[:, 0] * sample_visualization_w target_boxes[:, 2] = target_boxes[:, 2] * sample_visualization_w target_boxes[:, 1] = target_boxes[:, 1] * sample_visualization_h target_boxes[:, 3] = target_boxes[:, 3] * sample_visualization_h # any box format -> xyxy target_boxes = box_convert(target_boxes, in_fmt=box_fmt, out_fmt="xyxy") # clip to image size target_boxes[:, 0] = torch.clamp(target_boxes[:, 0], 0, sample_visualization_w) target_boxes[:, 1] = torch.clamp(target_boxes[:, 1], 0, sample_visualization_h) target_boxes[:, 2] = torch.clamp(target_boxes[:, 2], 0, sample_visualization_w) target_boxes[:, 3] = torch.clamp(target_boxes[:, 3], 0, sample_visualization_h) target_boxes = target_boxes.numpy().astype(np.int32) target_labels = target_labels.numpy().astype(np.int32) draw = ImageDraw.Draw(sample_visualization) # draw target boxes for box, label in zip(target_boxes, target_labels): x1, y1, x2, y2 = box # Select color based on class ID box_color = BOX_COLORS[int(label) % len(BOX_COLORS)] # Draw box (thick) draw.rectangle([x1, y1, x2, y2], outline=box_color, width=3) label_text = f"{label}" # Measure text size text_width, text_height = draw.textbbox((0, 0), label_text, font=font)[2:4] # Draw text background padding = 2 draw.rectangle( [x1, y1 - text_height - padding * 2, x1 + text_width + padding * 2, y1], fill=box_color ) # Draw text (LABEL_TEXT_COLOR) draw.text((x1 + padding, y1 - text_height - padding), label_text, fill=LABEL_TEXT_COLOR, font=font) save_path = Path(output_dir) / f"{split}_samples" / f"{target_image_id}_{target_image_path_stem}.webp" sample_visualization.save(save_path) def show_sample(sample): """for coco dataset/dataloader""" import matplotlib.pyplot as plt from torchvision.transforms.v2 import functional as F from torchvision.utils import draw_bounding_boxes image, target = sample if isinstance(image, PIL.Image.Image): image = F.to_image_tensor(image) image = F.convert_dtype(image, torch.uint8) annotated_image = draw_bounding_boxes(image, target["boxes"], colors="yellow", width=3) fig, ax = plt.subplots() ax.imshow(annotated_image.permute(1, 2, 0).numpy()) ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[]) fig.tight_layout() fig.show() plt.show()