""" https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.6/ppdet/modeling/backbones/cspresnet.py Copyright(c) 2023 lyuwenyu. All Rights Reserved. """ from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F from ...core import register from .common import get_activation __all__ = ["CSPResNet"] donwload_url = { "s": "https://github.com/lyuwenyu/storage/releases/download/v0.1/CSPResNetb_s_pretrained_from_paddle.pth", "m": "https://github.com/lyuwenyu/storage/releases/download/v0.1/CSPResNetb_m_pretrained_from_paddle.pth", "l": "https://github.com/lyuwenyu/storage/releases/download/v0.1/CSPResNetb_l_pretrained_from_paddle.pth", "x": "https://github.com/lyuwenyu/storage/releases/download/v0.1/CSPResNetb_x_pretrained_from_paddle.pth", } class ConvBNLayer(nn.Module): def __init__(self, ch_in, ch_out, filter_size=3, stride=1, groups=1, padding=0, act=None): super().__init__() self.conv = nn.Conv2d( ch_in, ch_out, filter_size, stride, padding, groups=groups, bias=False ) self.bn = nn.BatchNorm2d(ch_out) self.act = get_activation(act) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.conv(x) x = self.bn(x) x = self.act(x) return x class RepVggBlock(nn.Module): def __init__(self, ch_in, ch_out, act="relu", alpha: bool = False): super().__init__() self.ch_in = ch_in self.ch_out = ch_out self.conv1 = ConvBNLayer(ch_in, ch_out, 3, stride=1, padding=1, act=None) self.conv2 = ConvBNLayer(ch_in, ch_out, 1, stride=1, padding=0, act=None) self.act = get_activation(act) if alpha: self.alpha = nn.Parameter( torch.ones( 1, ) ) else: self.alpha = None def forward(self, x): if hasattr(self, "conv"): y = self.conv(x) else: if self.alpha: y = self.conv1(x) + self.alpha * self.conv2(x) else: y = self.conv1(x) + self.conv2(x) y = self.act(y) return y def convert_to_deploy(self): if not hasattr(self, "conv"): self.conv = nn.Conv2d(self.ch_in, self.ch_out, 3, 1, padding=1) kernel, bias = self.get_equivalent_kernel_bias() self.conv.weight.data = kernel self.conv.bias.data = bias def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1) kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2) if self.alpha: return kernel3x3 + self.alpha * self._pad_1x1_to_3x3_tensor( kernel1x1 ), bias3x3 + self.alpha * bias1x1 else: return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1), bias3x3 + bias1x1 def _pad_1x1_to_3x3_tensor(self, kernel1x1): if kernel1x1 is None: return 0 else: return F.pad(kernel1x1, [1, 1, 1, 1]) def _fuse_bn_tensor(self, branch: ConvBNLayer): if branch is None: return 0, 0 kernel = branch.conv.weight running_mean = branch.norm.running_mean running_var = branch.norm.running_var gamma = branch.norm.weight beta = branch.norm.bias eps = branch.norm.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std class BasicBlock(nn.Module): def __init__(self, ch_in, ch_out, act="relu", shortcut=True, use_alpha=False): super().__init__() assert ch_in == ch_out self.conv1 = ConvBNLayer(ch_in, ch_out, 3, stride=1, padding=1, act=act) self.conv2 = RepVggBlock(ch_out, ch_out, act=act, alpha=use_alpha) self.shortcut = shortcut def forward(self, x): y = self.conv1(x) y = self.conv2(y) if self.shortcut: return x + y else: return y class EffectiveSELayer(nn.Module): """Effective Squeeze-Excitation From `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 """ def __init__(self, channels, act="hardsigmoid"): super(EffectiveSELayer, self).__init__() self.fc = nn.Conv2d(channels, channels, kernel_size=1, padding=0) self.act = get_activation(act) def forward(self, x: torch.Tensor): x_se = x.mean((2, 3), keepdim=True) x_se = self.fc(x_se) x_se = self.act(x_se) return x * x_se class CSPResStage(nn.Module): def __init__(self, block_fn, ch_in, ch_out, n, stride, act="relu", attn="eca", use_alpha=False): super().__init__() ch_mid = (ch_in + ch_out) // 2 if stride == 2: self.conv_down = ConvBNLayer(ch_in, ch_mid, 3, stride=2, padding=1, act=act) else: self.conv_down = None self.conv1 = ConvBNLayer(ch_mid, ch_mid // 2, 1, act=act) self.conv2 = ConvBNLayer(ch_mid, ch_mid // 2, 1, act=act) self.blocks = nn.Sequential( *[ block_fn(ch_mid // 2, ch_mid // 2, act=act, shortcut=True, use_alpha=use_alpha) for i in range(n) ] ) if attn: self.attn = EffectiveSELayer(ch_mid, act="hardsigmoid") else: self.attn = None self.conv3 = ConvBNLayer(ch_mid, ch_out, 1, act=act) def forward(self, x): if self.conv_down is not None: x = self.conv_down(x) y1 = self.conv1(x) y2 = self.blocks(self.conv2(x)) y = torch.concat([y1, y2], dim=1) if self.attn is not None: y = self.attn(y) y = self.conv3(y) return y @register() class CSPResNet(nn.Module): layers = [3, 6, 6, 3] channels = [64, 128, 256, 512, 1024] model_cfg = { "s": { "depth_mult": 0.33, "width_mult": 0.50, }, "m": { "depth_mult": 0.67, "width_mult": 0.75, }, "l": { "depth_mult": 1.00, "width_mult": 1.00, }, "x": { "depth_mult": 1.33, "width_mult": 1.25, }, } def __init__( self, name: str, act="silu", return_idx=[1, 2, 3], use_large_stem=True, use_alpha=False, pretrained=False, ): super().__init__() depth_mult = self.model_cfg[name]["depth_mult"] width_mult = self.model_cfg[name]["width_mult"] channels = [max(round(c * width_mult), 1) for c in self.channels] layers = [max(round(l * depth_mult), 1) for l in self.layers] act = get_activation(act) if use_large_stem: self.stem = nn.Sequential( OrderedDict( [ ( "conv1", ConvBNLayer(3, channels[0] // 2, 3, stride=2, padding=1, act=act), ), ( "conv2", ConvBNLayer( channels[0] // 2, channels[0] // 2, 3, stride=1, padding=1, act=act ), ), ( "conv3", ConvBNLayer( channels[0] // 2, channels[0], 3, stride=1, padding=1, act=act ), ), ] ) ) else: self.stem = nn.Sequential( OrderedDict( [ ( "conv1", ConvBNLayer(3, channels[0] // 2, 3, stride=2, padding=1, act=act), ), ( "conv2", ConvBNLayer( channels[0] // 2, channels[0], 3, stride=1, padding=1, act=act ), ), ] ) ) n = len(channels) - 1 self.stages = nn.Sequential( OrderedDict( [ ( str(i), CSPResStage( BasicBlock, channels[i], channels[i + 1], layers[i], 2, act=act, use_alpha=use_alpha, ), ) for i in range(n) ] ) ) self._out_channels = channels[1:] self._out_strides = [4 * 2**i for i in range(n)] self.return_idx = return_idx if pretrained: if isinstance(pretrained, bool) or "http" in pretrained: state = torch.hub.load_state_dict_from_url(donwload_url[name], map_location="cpu") else: state = torch.load(pretrained, map_location="cpu") self.load_state_dict(state) print(f"Load CSPResNet_{name} state_dict") def forward(self, x): x = self.stem(x) outs = [] for idx, stage in enumerate(self.stages): x = stage(x) if idx in self.return_idx: outs.append(x) return outs