Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR) | |
Copyright(c) 2023 lyuwenyu. All Rights Reserved. | |
""" | |
import torch | |
import torch.distributed | |
import torch.nn.functional as F | |
import torchvision | |
from ...core import register | |
from ...misc import box_ops, dist_utils | |
class DetCriterion(torch.nn.Module): | |
"""Default Detection Criterion""" | |
__share__ = ["num_classes"] | |
__inject__ = ["matcher"] | |
def __init__( | |
self, | |
losses, | |
weight_dict, | |
num_classes=80, | |
alpha=0.75, | |
gamma=2.0, | |
box_fmt="cxcywh", | |
matcher=None, | |
): | |
""" | |
Args: | |
losses (list[str]): requested losses, support ['boxes', 'vfl', 'focal'] | |
weight_dict (dict[str, float)]: corresponding losses weight, including | |
['loss_bbox', 'loss_giou', 'loss_vfl', 'loss_focal'] | |
box_fmt (str): in box format, 'cxcywh' or 'xyxy' | |
matcher (Matcher): matcher used to match source to target | |
""" | |
super().__init__() | |
self.losses = losses | |
self.weight_dict = weight_dict | |
self.alpha = alpha | |
self.gamma = gamma | |
self.num_classes = num_classes | |
self.box_fmt = box_fmt | |
assert matcher is not None, "" | |
self.matcher = matcher | |
def forward(self, outputs, targets, **kwargs): | |
""" | |
Args: | |
outputs: Dict[Tensor], 'pred_boxes', 'pred_logits', 'meta'. | |
targets, List[Dict[str, Tensor]], len(targets) == batch_size. | |
kwargs, store other information such as current epoch id. | |
Return: | |
losses, Dict[str, Tensor] | |
""" | |
matched = self.matcher(outputs, targets) | |
values = matched["values"] | |
indices = matched["indices"] | |
num_boxes = self._get_positive_nums(indices) | |
# Compute all the requested losses | |
losses = {} | |
for loss in self.losses: | |
l_dict = self.get_loss(loss, outputs, targets, indices, num_boxes) | |
l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict} | |
losses.update(l_dict) | |
return losses | |
def _get_src_permutation_idx(self, indices): | |
# permute predictions following indices | |
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) | |
src_idx = torch.cat([src for (src, _) in indices]) | |
return batch_idx, src_idx | |
def _get_tgt_permutation_idx(self, indices): | |
# permute targets following indices | |
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) | |
tgt_idx = torch.cat([tgt for (_, tgt) in indices]) | |
return batch_idx, tgt_idx | |
def _get_positive_nums(self, indices): | |
# number of positive samples | |
num_pos = sum(len(i) for (i, _) in indices) | |
num_pos = torch.as_tensor([num_pos], dtype=torch.float32, device=indices[0][0].device) | |
if dist_utils.is_dist_available_and_initialized(): | |
torch.distributed.all_reduce(num_pos) | |
num_pos = torch.clamp(num_pos / dist_utils.get_world_size(), min=1).item() | |
return num_pos | |
def loss_labels_focal(self, outputs, targets, indices, num_boxes): | |
assert "pred_logits" in outputs | |
src_logits = outputs["pred_logits"] | |
idx = self._get_src_permutation_idx(indices) | |
target_classes_o = torch.cat([t["labels"][j] for t, (_, j) in zip(targets, indices)]) | |
target_classes = torch.full( | |
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device | |
) | |
target_classes[idx] = target_classes_o | |
target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1].to( | |
src_logits.dtype | |
) | |
loss = torchvision.ops.sigmoid_focal_loss( | |
src_logits, target, self.alpha, self.gamma, reduction="none" | |
) | |
loss = loss.sum() / num_boxes | |
return {"loss_focal": loss} | |
def loss_labels_vfl(self, outputs, targets, indices, num_boxes): | |
assert "pred_boxes" in outputs | |
idx = self._get_src_permutation_idx(indices) | |
src_boxes = outputs["pred_boxes"][idx] | |
target_boxes = torch.cat([t["boxes"][j] for t, (_, j) in zip(targets, indices)], dim=0) | |
src_boxes = torchvision.ops.box_convert(src_boxes, in_fmt=self.box_fmt, out_fmt="xyxy") | |
target_boxes = torchvision.ops.box_convert( | |
target_boxes, in_fmt=self.box_fmt, out_fmt="xyxy" | |
) | |
iou, _ = box_ops.elementwise_box_iou(src_boxes.detach(), target_boxes) | |
src_logits: torch.Tensor = outputs["pred_logits"] | |
target_classes_o = torch.cat([t["labels"][j] for t, (_, j) in zip(targets, indices)]) | |
target_classes = torch.full( | |
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device | |
) | |
target_classes[idx] = target_classes_o | |
target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1] | |
target_score_o = torch.zeros_like(target_classes, dtype=src_logits.dtype) | |
target_score_o[idx] = iou.to(src_logits.dtype) | |
target_score = target_score_o.unsqueeze(-1) * target | |
src_score = F.sigmoid(src_logits.detach()) | |
weight = self.alpha * src_score.pow(self.gamma) * (1 - target) + target_score | |
loss = F.binary_cross_entropy_with_logits( | |
src_logits, target_score, weight=weight, reduction="none" | |
) | |
loss = loss.sum() / num_boxes | |
return {"loss_vfl": loss} | |
def loss_boxes(self, outputs, targets, indices, num_boxes): | |
assert "pred_boxes" in outputs | |
idx = self._get_src_permutation_idx(indices) | |
src_boxes = outputs["pred_boxes"][idx] | |
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) | |
losses = {} | |
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction="none") | |
losses["loss_bbox"] = loss_bbox.sum() / num_boxes | |
src_boxes = torchvision.ops.box_convert(src_boxes, in_fmt=self.box_fmt, out_fmt="xyxy") | |
target_boxes = torchvision.ops.box_convert( | |
target_boxes, in_fmt=self.box_fmt, out_fmt="xyxy" | |
) | |
loss_giou = 1 - box_ops.elementwise_generalized_box_iou(src_boxes, target_boxes) | |
losses["loss_giou"] = loss_giou.sum() / num_boxes | |
return losses | |
def loss_boxes_giou(self, outputs, targets, indices, num_boxes): | |
assert "pred_boxes" in outputs | |
idx = self._get_src_permutation_idx(indices) | |
src_boxes = outputs["pred_boxes"][idx] | |
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) | |
losses = {} | |
src_boxes = torchvision.ops.box_convert(src_boxes, in_fmt=self.box_fmt, out_fmt="xyxy") | |
target_boxes = torchvision.ops.box_convert( | |
target_boxes, in_fmt=self.box_fmt, out_fmt="xyxy" | |
) | |
loss_giou = 1 - box_ops.elementwise_generalized_box_iou(src_boxes, target_boxes) | |
losses["loss_giou"] = loss_giou.sum() / num_boxes | |
return losses | |
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): | |
loss_map = { | |
"boxes": self.loss_boxes, | |
"giou": self.loss_boxes_giou, | |
"vfl": self.loss_labels_vfl, | |
"focal": self.loss_labels_focal, | |
} | |
assert loss in loss_map, f"do you really want to compute {loss} loss?" | |
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) | |