D-FINE / app.py
developer0hye's picture
Update app.py
751073d verified
"""
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.
"""
import gradio as gr
import spaces
import os
import sys
import torch
import torch.nn as nn
import torchvision.transforms as T
import supervision as sv
from PIL import Image
import requests
import yaml
import numpy as np
import gc
from src.core import YAMLConfig
model_configs = {
"dfine_n_coco":
{"cfgfile": "configs/dfine/dfine_hgnetv2_n_coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_n_coco.pth"},
"dfine_s_coco":
{"cfgfile": "configs/dfine/dfine_hgnetv2_s_coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_coco.pth"},
"dfine_m_coco":
{"cfgfile": "configs/dfine/dfine_hgnetv2_m_coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_coco.pth"},
"dfine_l_coco":
{"cfgfile": "configs/dfine/dfine_hgnetv2_l_coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_coco.pth"},
"dfine_x_coco":
{"cfgfile": "configs/dfine/dfine_hgnetv2_x_coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_coco.pth"},
"dfine_s_obj365":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_s_obj365.yml",
"classinfofile": "configs/obj365.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_obj365.pth"},
"dfine_m_obj365":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_m_obj365.yml",
"classinfofile": "configs/obj365.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_obj365.pth"},
"dfine_l_obj365":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_l_obj365.yml",
"classinfofile": "configs/obj365.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj365.pth"},
"dfine_l_obj365_e25":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_l_obj365.yml",
"classinfofile": "configs/obj365.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj365_e25.pth"},
"dfine_x_obj365":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_x_obj365.yml",
"classinfofile": "configs/obj365.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_obj365.pth"},
"dfine_s_obj2coco":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_s_obj2coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_obj2coco.pth"},
"dfine_m_obj2coco":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_m_obj2coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_obj2coco.pth"},
"dfine_l_obj2coco_e25":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_l_obj2coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj2coco_e25.pth"},
"dfine_x_obj2coco":
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_x_obj2coco.yml",
"classinfofile": "configs/coco.yml",
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_obj2coco.pth"},
}
def download_weights(model_name):
"""Download model weights if not already present"""
weights_url = model_configs[model_name]["weights"]
# Directory path to save weight files
weights_dir = os.path.join(os.path.dirname(__file__), "weights")
# Weight file path
weights_path = os.path.join(weights_dir, model_name + ".pth")
# Create weights directory if it doesn't exist
if not os.path.exists(weights_dir):
os.makedirs(weights_dir)
print(f"Created directory: {weights_dir}")
# Check if file already exists
if os.path.exists(weights_path):
print(f"Weights file already exists at: {weights_path}")
return weights_path
# Download file
print(f"Downloading weights from {weights_url} to {weights_path}...")
response = requests.get(weights_url, stream=True)
response.raise_for_status() # Check for download errors
with open(weights_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded weights to: {weights_path}")
return weights_path
@torch.no_grad()
def process_image_for_gradio(model, device, image, model_name, threshold=0.4):
"""Process image function for Gradio interface"""
if isinstance(image, np.ndarray):
# Convert NumPy array to PIL image
im_pil = Image.fromarray(image)
else:
im_pil = image
# Load class information
classinfofile = model_configs[model_name]["classinfofile"]
classinfo = yaml.load(open(classinfofile, "r"), Loader=yaml.FullLoader)["names"]
indexing_method = "0-based" if "coco" in classinfofile else "1-based"
w, h = im_pil.size
orig_size = torch.tensor([[w, h]]).to(device)
transforms = T.Compose(
[
T.Resize((640, 640)),
T.ToTensor(),
]
)
im_data = transforms(im_pil).unsqueeze(0).to(device)
output = model(im_data, orig_size)
labels, boxes, scores = output
# Visualize results
detections = sv.Detections(
xyxy=boxes[0].detach().cpu().numpy(),
confidence=scores[0].detach().cpu().numpy(),
class_id=labels[0].detach().cpu().numpy().astype(int),
)
detections = detections[detections.confidence > threshold]
text_scale = sv.calculate_optimal_text_scale(resolution_wh=im_pil.size)
line_thickness = sv.calculate_optimal_line_thickness(resolution_wh=im_pil.size)
box_annotator = sv.BoxAnnotator(thickness=line_thickness)
label_annotator = sv.LabelAnnotator(text_scale=text_scale, smart_position=True)
label_texts = [
f"{classinfo[class_id if indexing_method == '0-based' else class_id - 1]} {confidence:.2f}"
for class_id, confidence
in zip(detections.class_id, detections.confidence)
]
result_image = im_pil.copy()
result_image = box_annotator.annotate(scene=result_image, detections=detections)
result_image = label_annotator.annotate(
scene=result_image,
detections=detections,
labels=label_texts
)
detection_info = [
f"{classinfo[class_id if indexing_method == '0-based' else class_id - 1]}: {confidence:.2f}, bbox: [{xyxy[0]:.1f}, {xyxy[1]:.1f}, {xyxy[2]:.1f}, {xyxy[3]:.1f}]"
for class_id, confidence, xyxy
in zip(detections.class_id, detections.confidence, detections.xyxy)
]
return result_image, "\n".join(detection_info)
class ModelWrapper(nn.Module):
def __init__(self, cfg):
super().__init__()
self.model = cfg.model.deploy()
self.postprocessor = cfg.postprocessor.deploy()
def forward(self, images, orig_target_sizes):
outputs = self.model(images)
outputs = self.postprocessor(outputs, orig_target_sizes)
return outputs
# YAMLConfig ํด๋ž˜์Šค์˜ ๋‚ด๋ถ€ ์ƒํƒœ๋ฅผ ์ดˆ๊ธฐํ™”ํ•˜๋Š” ํ•จ์ˆ˜ ์ถ”๊ฐ€
def reset_yaml_config():
"""YAMLConfig ํด๋ž˜์Šค์˜ ๋‚ด๋ถ€ ์ƒํƒœ๋ฅผ ์ดˆ๊ธฐํ™”"""
# ํด๋ž˜์Šค ๋‚ด๋ถ€์— ์บ์‹ฑ๋œ ์ •๋ณด๊ฐ€ ์žˆ๋‹ค๋ฉด ์‚ญ์ œ
if hasattr(YAMLConfig, '_instances'):
YAMLConfig._instances = {}
if hasattr(YAMLConfig, '_configs'):
YAMLConfig._configs = {}
# ๊ฐ€๋Šฅํ•œ ๋‹ค๋ฅธ ๋ชจ๋“  ๋ชจ๋“ˆ ์บ์‹œ ๋ฆฌ์…‹
import importlib
for module_name in list(sys.modules.keys()):
if module_name.startswith('src.'):
try:
importlib.reload(sys.modules[module_name])
except:
pass
def load_model(model_name):
# ๋ชจ๋ธ ๋กœ๋“œ ์ „์— CUDA ์บ์‹œ์™€ ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜ ์ •๋ฆฌ
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# YAMLConfig ๋‚ด๋ถ€ ์ƒํƒœ ์ดˆ๊ธฐํ™”
reset_yaml_config()
cfgfile = model_configs[model_name]["cfgfile"]
weights_path = download_weights(model_name)
# ์™„์ „ํžˆ ์ƒˆ๋กœ์šด YAMLConfig ์ธ์Šคํ„ด์Šค ์ƒ์„ฑ
cfg = YAMLConfig(cfgfile, resume=weights_path)
if "HGNetv2" in cfg.yaml_cfg:
cfg.yaml_cfg["HGNetv2"]["pretrained"] = False
checkpoint = torch.load(weights_path, map_location="cpu")
state = checkpoint["ema"]["module"] if "ema" in checkpoint else checkpoint["model"]
# ๋ชจ๋ธ ์ƒ์„ฑ ์ „ ํ•œ๋ฒˆ ๋” ํ™•์ธ
torch.cuda.empty_cache()
gc.collect()
cfg.model.load_state_dict(state, strict=False)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = ModelWrapper(cfg).to(device)
model.eval()
return model, device
@spaces.GPU
def process_image(image, model_name, confidence_threshold):
"""Main processing function for Gradio interface"""
# ๋ชจ๋“  ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ CUDA ์žฅ์น˜ ๋ฉ”๋ชจ๋ฆฌ ํ™•๋ณด
if torch.cuda.is_available():
torch.cuda.empty_cache()
# ๋ชจ๋“  Python ๊ฐ์ฒด ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜
gc.collect()
try:
print(f"Loading model: {model_name}")
model, device = load_model(model_name)
# ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ
result = process_image_for_gradio(model, device, image, model_name, confidence_threshold)
# ๋ชจ๋ธ ๊ฐ์ฒด ๋ฐ ๊ด€๋ จ ๋ฐ์ดํ„ฐ ๋ช…์‹œ์  ์ œ๊ฑฐ
del model
finally:
# ํ•ญ์ƒ ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ ๋ณด์žฅ
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return result
# Create Gradio interface
demo = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Dropdown(
choices=list(model_configs.keys()),
value="dfine_n_coco",
label="Model Selection"
),
gr.Slider(
minimum=0.1,
maximum=0.9,
value=0.4,
step=0.05,
label="Confidence Threshold"
)
],
outputs=[
gr.Image(type="pil", label="Detection Result"),
gr.Textbox(label="Detected Objects")
],
title="D-FINE Object Detection Demo",
description="Upload an image to see object detection results using the D-FINE model. You can select different models and adjust the confidence threshold.",
examples=[
["examples/image1.jpg", "dfine_n_coco", 0.4],
]
)
if __name__ == "__main__":
# Launch the Gradio app
demo.launch(share=True)