File size: 14,564 Bytes
e85fecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import copy
from collections import defaultdict
from pathlib import Path
from typing import Dict, List

import matplotlib.pyplot as plt
import numpy as np
import torch
from loguru import logger
from torchvision.ops import box_iou


class Validator:
    def __init__(

        self,

        gt: List[Dict[str, torch.Tensor]],

        preds: List[Dict[str, torch.Tensor]],

        conf_thresh=0.5,

        iou_thresh=0.5,

    ) -> None:
        """

        Format example:

        gt = [{'labels': tensor([0]), 'boxes': tensor([[561.0, 297.0, 661.0, 359.0]])}, ...]

        len(gt) is the number of images

        bboxes are in format [x1, y1, x2, y2], absolute values

        """
        self.gt = gt
        self.preds = preds
        self.conf_thresh = conf_thresh
        self.iou_thresh = iou_thresh
        self.thresholds = np.arange(0.2, 1.0, 0.05)
        self.conf_matrix = None

    def compute_metrics(self, extended=False) -> Dict[str, float]:
        filtered_preds = filter_preds(copy.deepcopy(self.preds), self.conf_thresh)
        metrics = self._compute_main_metrics(filtered_preds)
        if not extended:
            metrics.pop("extended_metrics", None)
        return metrics

    def _compute_main_metrics(self, preds):
        (
            self.metrics_per_class,
            self.conf_matrix,
            self.class_to_idx,
        ) = self._compute_metrics_and_confusion_matrix(preds)
        tps, fps, fns = 0, 0, 0
        ious = []
        extended_metrics = {}
        for key, value in self.metrics_per_class.items():
            tps += value["TPs"]
            fps += value["FPs"]
            fns += value["FNs"]
            ious.extend(value["IoUs"])

            extended_metrics[f"precision_{key}"] = (
                value["TPs"] / (value["TPs"] + value["FPs"])
                if value["TPs"] + value["FPs"] > 0
                else 0
            )
            extended_metrics[f"recall_{key}"] = (
                value["TPs"] / (value["TPs"] + value["FNs"])
                if value["TPs"] + value["FNs"] > 0
                else 0
            )

            extended_metrics[f"iou_{key}"] = np.mean(value["IoUs"])

        precision = tps / (tps + fps) if (tps + fps) > 0 else 0
        recall = tps / (tps + fns) if (tps + fns) > 0 else 0
        f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
        iou = np.mean(ious).item() if ious else 0
        return {
            "f1": f1,
            "precision": precision,
            "recall": recall,
            "iou": iou,
            "TPs": tps,
            "FPs": fps,
            "FNs": fns,
            "extended_metrics": extended_metrics,
        }

    def _compute_matrix_multi_class(self, preds):
        metrics_per_class = defaultdict(lambda: {"TPs": 0, "FPs": 0, "FNs": 0, "IoUs": []})
        for pred, gt in zip(preds, self.gt):
            pred_boxes = pred["boxes"]
            pred_labels = pred["labels"]
            gt_boxes = gt["boxes"]
            gt_labels = gt["labels"]

            # isolate each class
            labels = torch.unique(torch.cat([pred_labels, gt_labels]))
            for label in labels:
                pred_cl_boxes = pred_boxes[pred_labels == label]  # filter by bool mask
                gt_cl_boxes = gt_boxes[gt_labels == label]

                n_preds = len(pred_cl_boxes)
                n_gts = len(gt_cl_boxes)
                if not (n_preds or n_gts):
                    continue
                if not n_preds:
                    metrics_per_class[label.item()]["FNs"] += n_gts
                    metrics_per_class[label.item()]["IoUs"].extend([0] * n_gts)
                    continue
                if not n_gts:
                    metrics_per_class[label.item()]["FPs"] += n_preds
                    metrics_per_class[label.item()]["IoUs"].extend([0] * n_preds)
                    continue

                ious = box_iou(pred_cl_boxes, gt_cl_boxes)  # matrix of all IoUs
                ious_mask = ious >= self.iou_thresh

                # indeces of boxes that have IoU >= threshold
                pred_indices, gt_indices = torch.nonzero(ious_mask, as_tuple=True)

                if not pred_indices.numel():  # no predicts matched gts
                    metrics_per_class[label.item()]["FNs"] += n_gts
                    metrics_per_class[label.item()]["IoUs"].extend([0] * n_gts)
                    metrics_per_class[label.item()]["FPs"] += n_preds
                    metrics_per_class[label.item()]["IoUs"].extend([0] * n_preds)
                    continue

                iou_values = ious[pred_indices, gt_indices]

                # sorting by IoU to match hgihest scores first
                sorted_indices = torch.argsort(-iou_values)
                pred_indices = pred_indices[sorted_indices]
                gt_indices = gt_indices[sorted_indices]
                iou_values = iou_values[sorted_indices]

                matched_preds = set()
                matched_gts = set()
                for pred_idx, gt_idx, iou in zip(pred_indices, gt_indices, iou_values):
                    if gt_idx.item() not in matched_gts and pred_idx.item() not in matched_preds:
                        matched_preds.add(pred_idx.item())
                        matched_gts.add(gt_idx.item())
                        metrics_per_class[label.item()]["TPs"] += 1
                        metrics_per_class[label.item()]["IoUs"].append(iou.item())

                unmatched_preds = set(range(n_preds)) - matched_preds
                unmatched_gts = set(range(n_gts)) - matched_gts
                metrics_per_class[label.item()]["FPs"] += len(unmatched_preds)
                metrics_per_class[label.item()]["IoUs"].extend([0] * len(unmatched_preds))
                metrics_per_class[label.item()]["FNs"] += len(unmatched_gts)
                metrics_per_class[label.item()]["IoUs"].extend([0] * len(unmatched_gts))
        return metrics_per_class

    def _compute_metrics_and_confusion_matrix(self, preds):
        # Initialize per-class metrics
        metrics_per_class = defaultdict(lambda: {"TPs": 0, "FPs": 0, "FNs": 0, "IoUs": []})

        # Collect all class IDs
        all_classes = set()
        for pred in preds:
            all_classes.update(pred["labels"].tolist())
        for gt in self.gt:
            all_classes.update(gt["labels"].tolist())
        all_classes = sorted(list(all_classes))
        class_to_idx = {cls_id: idx for idx, cls_id in enumerate(all_classes)}
        n_classes = len(all_classes)
        conf_matrix = np.zeros((n_classes + 1, n_classes + 1), dtype=int)  # +1 for background class

        for pred, gt in zip(preds, self.gt):
            pred_boxes = pred["boxes"]
            pred_labels = pred["labels"]
            gt_boxes = gt["boxes"]
            gt_labels = gt["labels"]

            n_preds = len(pred_boxes)
            n_gts = len(gt_boxes)

            if n_preds == 0 and n_gts == 0:
                continue

            ious = box_iou(pred_boxes, gt_boxes) if n_preds > 0 and n_gts > 0 else torch.tensor([])
            # Assign matches between preds and gts
            matched_pred_indices = set()
            matched_gt_indices = set()

            if ious.numel() > 0:
                # For each pred box, find the gt box with highest IoU
                ious_mask = ious >= self.iou_thresh
                pred_indices, gt_indices = torch.nonzero(ious_mask, as_tuple=True)
                iou_values = ious[pred_indices, gt_indices]

                # Sorting by IoU to match highest scores first
                sorted_indices = torch.argsort(-iou_values)
                pred_indices = pred_indices[sorted_indices]
                gt_indices = gt_indices[sorted_indices]
                iou_values = iou_values[sorted_indices]

                for pred_idx, gt_idx, iou in zip(pred_indices, gt_indices, iou_values):
                    if (
                        pred_idx.item() in matched_pred_indices
                        or gt_idx.item() in matched_gt_indices
                    ):
                        continue
                    matched_pred_indices.add(pred_idx.item())
                    matched_gt_indices.add(gt_idx.item())

                    pred_label = pred_labels[pred_idx].item()
                    gt_label = gt_labels[gt_idx].item()

                    pred_cls_idx = class_to_idx[pred_label]
                    gt_cls_idx = class_to_idx[gt_label]

                    # Update confusion matrix
                    conf_matrix[gt_cls_idx, pred_cls_idx] += 1

                    # Update per-class metrics
                    if pred_label == gt_label:
                        metrics_per_class[gt_label]["TPs"] += 1
                        metrics_per_class[gt_label]["IoUs"].append(iou.item())
                    else:
                        # Misclassification
                        metrics_per_class[gt_label]["FNs"] += 1
                        metrics_per_class[pred_label]["FPs"] += 1
                        metrics_per_class[gt_label]["IoUs"].append(0)
                        metrics_per_class[pred_label]["IoUs"].append(0)

            # Unmatched predictions (False Positives)
            unmatched_pred_indices = set(range(n_preds)) - matched_pred_indices
            for pred_idx in unmatched_pred_indices:
                pred_label = pred_labels[pred_idx].item()
                pred_cls_idx = class_to_idx[pred_label]
                # Update confusion matrix: background row
                conf_matrix[n_classes, pred_cls_idx] += 1
                # Update per-class metrics
                metrics_per_class[pred_label]["FPs"] += 1
                metrics_per_class[pred_label]["IoUs"].append(0)

            # Unmatched ground truths (False Negatives)
            unmatched_gt_indices = set(range(n_gts)) - matched_gt_indices
            for gt_idx in unmatched_gt_indices:
                gt_label = gt_labels[gt_idx].item()
                gt_cls_idx = class_to_idx[gt_label]
                # Update confusion matrix: background column
                conf_matrix[gt_cls_idx, n_classes] += 1
                # Update per-class metrics
                metrics_per_class[gt_label]["FNs"] += 1
                metrics_per_class[gt_label]["IoUs"].append(0)

        return metrics_per_class, conf_matrix, class_to_idx

    def save_plots(self, path_to_save) -> None:
        path_to_save = Path(path_to_save)
        path_to_save.mkdir(parents=True, exist_ok=True)

        if self.conf_matrix is not None:
            class_labels = [str(cls_id) for cls_id in self.class_to_idx.keys()] + ["background"]

            plt.figure(figsize=(10, 8))
            plt.imshow(self.conf_matrix, interpolation="nearest", cmap=plt.cm.Blues)
            plt.title("Confusion Matrix")
            plt.colorbar()
            tick_marks = np.arange(len(class_labels))
            plt.xticks(tick_marks, class_labels, rotation=45)
            plt.yticks(tick_marks, class_labels)

            # Add labels to each cell
            thresh = self.conf_matrix.max() / 2.0
            for i in range(self.conf_matrix.shape[0]):
                for j in range(self.conf_matrix.shape[1]):
                    plt.text(
                        j,
                        i,
                        format(self.conf_matrix[i, j], "d"),
                        horizontalalignment="center",
                        color="white" if self.conf_matrix[i, j] > thresh else "black",
                    )

            plt.ylabel("True label")
            plt.xlabel("Predicted label")
            plt.tight_layout()
            plt.savefig(path_to_save / "confusion_matrix.png")
            plt.close()

        thresholds = self.thresholds
        precisions, recalls, f1_scores = [], [], []

        # Store the original predictions to reset after each threshold
        original_preds = copy.deepcopy(self.preds)

        for threshold in thresholds:
            # Filter predictions based on the current threshold
            filtered_preds = filter_preds(copy.deepcopy(original_preds), threshold)
            # Compute metrics with the filtered predictions
            metrics = self._compute_main_metrics(filtered_preds)
            precisions.append(metrics["precision"])
            recalls.append(metrics["recall"])
            f1_scores.append(metrics["f1"])

        # Plot Precision and Recall vs Threshold
        plt.figure()
        plt.plot(thresholds, precisions, label="Precision", marker="o")
        plt.plot(thresholds, recalls, label="Recall", marker="o")
        plt.xlabel("Threshold")
        plt.ylabel("Value")
        plt.title("Precision and Recall vs Threshold")
        plt.legend()
        plt.grid(True)
        plt.savefig(path_to_save / "precision_recall_vs_threshold.png")
        plt.close()

        # Plot F1 Score vs Threshold
        plt.figure()
        plt.plot(thresholds, f1_scores, label="F1 Score", marker="o")
        plt.xlabel("Threshold")
        plt.ylabel("F1 Score")
        plt.title("F1 Score vs Threshold")
        plt.grid(True)
        plt.savefig(path_to_save / "f1_score_vs_threshold.png")
        plt.close()

        # Find the best threshold based on F1 Score (last occurence)
        best_idx = len(f1_scores) - np.argmax(f1_scores[::-1]) - 1
        best_threshold = thresholds[best_idx]
        best_f1 = f1_scores[best_idx]

        logger.info(
            f"Best Threshold: {round(best_threshold, 2)} with F1 Score: {round(best_f1, 3)}"
        )


def filter_preds(preds, conf_thresh):
    for pred in preds:
        keep_idxs = pred["scores"] >= conf_thresh
        pred["scores"] = pred["scores"][keep_idxs]
        pred["boxes"] = pred["boxes"][keep_idxs]
        pred["labels"] = pred["labels"][keep_idxs]
    return preds


def scale_boxes(boxes, orig_shape, resized_shape):
    """

    boxes in format: [x1, y1, x2, y2], absolute values

    orig_shape: [height, width]

    resized_shape: [height, width]

    """
    scale_x = orig_shape[1] / resized_shape[1]
    scale_y = orig_shape[0] / resized_shape[0]
    boxes[:, 0] *= scale_x
    boxes[:, 2] *= scale_x
    boxes[:, 1] *= scale_y
    boxes[:, 3] *= scale_y
    return boxes