File size: 9,086 Bytes
e85fecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""

D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement

Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.

---------------------------------------------------------------------------------

Modified from RT-DETR (https://github.com/lyuwenyu/RT-DETR)

Copyright (c) 2023 lyuwenyu. All Rights Reserved.

"""

import datetime
import json
import time

import torch

from ..misc import dist_utils, stats
from ._solver import BaseSolver
from .det_engine import evaluate, train_one_epoch


class DetSolver(BaseSolver):
    def fit(self):
        self.train()
        args = self.cfg
        metric_names = ["AP50:95", "AP50", "AP75", "APsmall", "APmedium", "APlarge"]

        if self.use_wandb:
            import wandb

            wandb.init(
                project=args.yaml_cfg["project_name"],
                name=args.yaml_cfg["exp_name"],
                config=args.yaml_cfg,
            )
            wandb.watch(self.model)

        n_parameters, model_stats = stats(self.cfg)
        print(model_stats)
        print("-" * 42 + "Start training" + "-" * 43)
        top1 = 0
        best_stat = {
            "epoch": -1,
        }
        if self.last_epoch > 0:
            module = self.ema.module if self.ema else self.model
            test_stats, coco_evaluator = evaluate(
                module,
                self.criterion,
                self.postprocessor,
                self.val_dataloader,
                self.evaluator,
                self.device,
                self.last_epoch,
                self.use_wandb
            )
            for k in test_stats:
                best_stat["epoch"] = self.last_epoch
                best_stat[k] = test_stats[k][0]
                top1 = test_stats[k][0]
                print(f"best_stat: {best_stat}")

        best_stat_print = best_stat.copy()
        start_time = time.time()
        start_epoch = self.last_epoch + 1
        for epoch in range(start_epoch, args.epochs):
            self.train_dataloader.set_epoch(epoch)
            # self.train_dataloader.dataset.set_epoch(epoch)
            if dist_utils.is_dist_available_and_initialized():
                self.train_dataloader.sampler.set_epoch(epoch)

            if epoch == self.train_dataloader.collate_fn.stop_epoch:
                self.load_resume_state(str(self.output_dir / "best_stg1.pth"))
                if self.ema:
                    self.ema.decay = self.train_dataloader.collate_fn.ema_restart_decay
                    print(f"Refresh EMA at epoch {epoch} with decay {self.ema.decay}")

            train_stats = train_one_epoch(
                self.model,
                self.criterion,
                self.train_dataloader,
                self.optimizer,
                self.device,
                epoch,
                max_norm=args.clip_max_norm,
                print_freq=args.print_freq,
                ema=self.ema,
                scaler=self.scaler,
                lr_warmup_scheduler=self.lr_warmup_scheduler,
                writer=self.writer,
                use_wandb=self.use_wandb,
                output_dir=self.output_dir,
            )

            if self.lr_warmup_scheduler is None or self.lr_warmup_scheduler.finished():
                self.lr_scheduler.step()

            self.last_epoch += 1

            if self.output_dir and epoch < self.train_dataloader.collate_fn.stop_epoch:
                checkpoint_paths = [self.output_dir / "last.pth"]
                # extra checkpoint before LR drop and every 100 epochs
                if (epoch + 1) % args.checkpoint_freq == 0:
                    checkpoint_paths.append(self.output_dir / f"checkpoint{epoch:04}.pth")
                for checkpoint_path in checkpoint_paths:
                    dist_utils.save_on_master(self.state_dict(), checkpoint_path)

            module = self.ema.module if self.ema else self.model
            test_stats, coco_evaluator = evaluate(
                module,
                self.criterion,
                self.postprocessor,
                self.val_dataloader,
                self.evaluator,
                self.device,
                epoch,
                self.use_wandb,
                output_dir=self.output_dir,
            )

            # TODO
            for k in test_stats:
                if self.writer and dist_utils.is_main_process():
                    for i, v in enumerate(test_stats[k]):
                        self.writer.add_scalar(f"Test/{k}_{i}".format(k), v, epoch)

                if k in best_stat:
                    best_stat["epoch"] = (
                        epoch if test_stats[k][0] > best_stat[k] else best_stat["epoch"]
                    )
                    best_stat[k] = max(best_stat[k], test_stats[k][0])
                else:
                    best_stat["epoch"] = epoch
                    best_stat[k] = test_stats[k][0]

                if best_stat[k] > top1:
                    best_stat_print["epoch"] = epoch
                    top1 = best_stat[k]
                    if self.output_dir:
                        if epoch >= self.train_dataloader.collate_fn.stop_epoch:
                            dist_utils.save_on_master(
                                self.state_dict(), self.output_dir / "best_stg2.pth"
                            )
                        else:
                            dist_utils.save_on_master(
                                self.state_dict(), self.output_dir / "best_stg1.pth"
                            )

                best_stat_print[k] = max(best_stat[k], top1)
                print(f"best_stat: {best_stat_print}")  # global best

                if best_stat["epoch"] == epoch and self.output_dir:
                    if epoch >= self.train_dataloader.collate_fn.stop_epoch:
                        if test_stats[k][0] > top1:
                            top1 = test_stats[k][0]
                            dist_utils.save_on_master(
                                self.state_dict(), self.output_dir / "best_stg2.pth"
                            )
                    else:
                        top1 = max(test_stats[k][0], top1)
                        dist_utils.save_on_master(
                            self.state_dict(), self.output_dir / "best_stg1.pth"
                        )

                elif epoch >= self.train_dataloader.collate_fn.stop_epoch:
                    best_stat = {
                        "epoch": -1,
                    }
                    if self.ema:
                        self.ema.decay -= 0.0001
                        self.load_resume_state(str(self.output_dir / "best_stg1.pth"))
                        print(f"Refresh EMA at epoch {epoch} with decay {self.ema.decay}")

            log_stats = {
                **{f"train_{k}": v for k, v in train_stats.items()},
                **{f"test_{k}": v for k, v in test_stats.items()},
                "epoch": epoch,
                "n_parameters": n_parameters,
            }

            if self.use_wandb:
                wandb_logs = {}
                for idx, metric_name in enumerate(metric_names):
                    wandb_logs[f"metrics/{metric_name}"] = test_stats["coco_eval_bbox"][idx]
                wandb_logs["epoch"] = epoch
                wandb.log(wandb_logs)

            if self.output_dir and dist_utils.is_main_process():
                with (self.output_dir / "log.txt").open("a") as f:
                    f.write(json.dumps(log_stats) + "\n")

                # for evaluation logs
                if coco_evaluator is not None:
                    (self.output_dir / "eval").mkdir(exist_ok=True)
                    if "bbox" in coco_evaluator.coco_eval:
                        filenames = ["latest.pth"]
                        if epoch % 50 == 0:
                            filenames.append(f"{epoch:03}.pth")
                        for name in filenames:
                            torch.save(
                                coco_evaluator.coco_eval["bbox"].eval,
                                self.output_dir / "eval" / name,
                            )

        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print("Training time {}".format(total_time_str))

    def val(self):
        self.eval()

        module = self.ema.module if self.ema else self.model
        test_stats, coco_evaluator = evaluate(
            module,
            self.criterion,
            self.postprocessor,
            self.val_dataloader,
            self.evaluator,
            self.device,
            epoch=-1,
            use_wandb=False,
        )

        if self.output_dir:
            dist_utils.save_on_master(
                coco_evaluator.coco_eval["bbox"].eval, self.output_dir / "eval.pth"
            )

        return