File size: 10,097 Bytes
e85fecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""

D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement

Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.

---------------------------------------------------------------------------------

Modified from DETR (https://github.com/facebookresearch/detr/blob/main/engine.py)

Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

"""

import math
import sys
from typing import Dict, Iterable, List

import numpy as np
import torch
import torch.amp
from torch.cuda.amp.grad_scaler import GradScaler
from torch.utils.tensorboard import SummaryWriter

from ..data import CocoEvaluator
from ..data.dataset import mscoco_category2label
from ..misc import MetricLogger, SmoothedValue, dist_utils, save_samples
from ..optim import ModelEMA, Warmup
from .validator import Validator, scale_boxes


def train_one_epoch(

    model: torch.nn.Module,

    criterion: torch.nn.Module,

    data_loader: Iterable,

    optimizer: torch.optim.Optimizer,

    device: torch.device,

    epoch: int,

    use_wandb: bool,

    max_norm: float = 0,

    **kwargs,

):
    if use_wandb:
        import wandb

    model.train()
    criterion.train()
    metric_logger = MetricLogger(delimiter="  ")
    metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}"))
    header = "Epoch: [{}]".format(epoch)

    print_freq = kwargs.get("print_freq", 10)
    writer: SummaryWriter = kwargs.get("writer", None)

    ema: ModelEMA = kwargs.get("ema", None)
    scaler: GradScaler = kwargs.get("scaler", None)
    lr_warmup_scheduler: Warmup = kwargs.get("lr_warmup_scheduler", None)
    losses = []

    output_dir = kwargs.get("output_dir", None)
    num_visualization_sample_batch = kwargs.get("num_visualization_sample_batch", 1)

    for i, (samples, targets) in enumerate(
        metric_logger.log_every(data_loader, print_freq, header)
    ):
        global_step = epoch * len(data_loader) + i
        metas = dict(epoch=epoch, step=i, global_step=global_step, epoch_step=len(data_loader))

        if global_step < num_visualization_sample_batch and output_dir is not None and dist_utils.is_main_process():
            save_samples(samples, targets, output_dir, "train", normalized=True, box_fmt="cxcywh")

        samples = samples.to(device)
        targets = [{k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in t.items()} for t in targets]

        if scaler is not None:
            with torch.autocast(device_type=str(device), cache_enabled=True):
                outputs = model(samples, targets=targets)

            if torch.isnan(outputs["pred_boxes"]).any() or torch.isinf(outputs["pred_boxes"]).any():
                print(outputs["pred_boxes"])
                state = model.state_dict()
                new_state = {}
                for key, value in model.state_dict().items():
                    # Replace 'module' with 'model' in each key
                    new_key = key.replace("module.", "")
                    # Add the updated key-value pair to the state dictionary
                    state[new_key] = value
                new_state["model"] = state
                dist_utils.save_on_master(new_state, "./NaN.pth")

            with torch.autocast(device_type=str(device), enabled=False):
                loss_dict = criterion(outputs, targets, **metas)

            loss = sum(loss_dict.values())
            scaler.scale(loss).backward()

            if max_norm > 0:
                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)

            scaler.step(optimizer)
            scaler.update()
            optimizer.zero_grad()

        else:
            outputs = model(samples, targets=targets)
            loss_dict = criterion(outputs, targets, **metas)

            loss: torch.Tensor = sum(loss_dict.values())
            optimizer.zero_grad()
            loss.backward()

            if max_norm > 0:
                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)

            optimizer.step()

        # ema
        if ema is not None:
            ema.update(model)

        if lr_warmup_scheduler is not None:
            lr_warmup_scheduler.step()

        loss_dict_reduced = dist_utils.reduce_dict(loss_dict)
        loss_value = sum(loss_dict_reduced.values())
        losses.append(loss_value.detach().cpu().numpy())

        if not math.isfinite(loss_value):
            print("Loss is {}, stopping training".format(loss_value))
            print(loss_dict_reduced)
            sys.exit(1)

        metric_logger.update(loss=loss_value, **loss_dict_reduced)
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])

        if writer and dist_utils.is_main_process() and global_step % 10 == 0:
            writer.add_scalar("Loss/total", loss_value.item(), global_step)
            for j, pg in enumerate(optimizer.param_groups):
                writer.add_scalar(f"Lr/pg_{j}", pg["lr"], global_step)
            for k, v in loss_dict_reduced.items():
                writer.add_scalar(f"Loss/{k}", v.item(), global_step)

    if use_wandb:
        wandb.log(
            {"lr": optimizer.param_groups[0]["lr"], "epoch": epoch, "train/loss": np.mean(losses)}
        )
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}


@torch.no_grad()
def evaluate(

    model: torch.nn.Module,

    criterion: torch.nn.Module,

    postprocessor,

    data_loader,

    coco_evaluator: CocoEvaluator,

    device,

    epoch: int,

    use_wandb: bool,

    **kwargs,

):
    if use_wandb:
        import wandb

    model.eval()
    criterion.eval()
    coco_evaluator.cleanup()

    metric_logger = MetricLogger(delimiter="  ")
    # metric_logger.add_meter('class_error', SmoothedValue(window_size=1, fmt='{value:.2f}'))
    header = "Test:"

    # iou_types = tuple(k for k in ('segm', 'bbox') if k in postprocessor.keys())
    iou_types = coco_evaluator.iou_types
    # coco_evaluator = CocoEvaluator(base_ds, iou_types)
    # coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75]

    gt: List[Dict[str, torch.Tensor]] = []
    preds: List[Dict[str, torch.Tensor]] = []

    output_dir = kwargs.get("output_dir", None)
    num_visualization_sample_batch = kwargs.get("num_visualization_sample_batch", 1)

    for i, (samples, targets) in enumerate(metric_logger.log_every(data_loader, 10, header)):
        global_step = epoch * len(data_loader) + i

        if global_step < num_visualization_sample_batch and output_dir is not None and dist_utils.is_main_process():
            save_samples(samples, targets, output_dir, "val", normalized=False, box_fmt="xyxy")

        samples = samples.to(device)
        targets = [{k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in t.items()} for t in targets]

        outputs = model(samples)
        # with torch.autocast(device_type=str(device)):
        #     outputs = model(samples)

        # TODO (lyuwenyu), fix dataset converted using `convert_to_coco_api`?
        orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
        # orig_target_sizes = torch.tensor([[samples.shape[-1], samples.shape[-2]]], device=samples.device)

        results = postprocessor(outputs, orig_target_sizes)

        # if 'segm' in postprocessor.keys():
        #     target_sizes = torch.stack([t["size"] for t in targets], dim=0)
        #     results = postprocessor['segm'](results, outputs, orig_target_sizes, target_sizes)

        res = {target["image_id"].item(): output for target, output in zip(targets, results)}
        if coco_evaluator is not None:
            coco_evaluator.update(res)

        # validator format for metrics
        for idx, (target, result) in enumerate(zip(targets, results)):
            gt.append(
                {
                    "boxes": scale_boxes(  # from model input size to original img size
                        target["boxes"],
                        (target["orig_size"][1], target["orig_size"][0]),
                        (samples[idx].shape[-1], samples[idx].shape[-2]),
                    ),
                    "labels": target["labels"],
                }
            )
            labels = (
                torch.tensor([mscoco_category2label[int(x.item())] for x in result["labels"].flatten()])
                .to(result["labels"].device)
                .reshape(result["labels"].shape)
            ) if postprocessor.remap_mscoco_category else result["labels"]
            preds.append(
                {"boxes": result["boxes"], "labels": labels, "scores": result["scores"]}
            )

    # Conf matrix, F1, Precision, Recall, box IoU
    metrics = Validator(gt, preds).compute_metrics()
    print("Metrics:", metrics)
    if use_wandb:
        metrics = {f"metrics/{k}": v for k, v in metrics.items()}
        metrics["epoch"] = epoch
        wandb.log(metrics)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    if coco_evaluator is not None:
        coco_evaluator.synchronize_between_processes()

    # accumulate predictions from all images
    if coco_evaluator is not None:
        coco_evaluator.accumulate()
        coco_evaluator.summarize()

    stats = {}
    # stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
    if coco_evaluator is not None:
        if "bbox" in iou_types:
            stats["coco_eval_bbox"] = coco_evaluator.coco_eval["bbox"].stats.tolist()
        if "segm" in iou_types:
            stats["coco_eval_masks"] = coco_evaluator.coco_eval["segm"].stats.tolist()

    return stats, coco_evaluator