File size: 1,680 Bytes
e85fecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
"""

Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)

Copyright(c) 2023 lyuwenyu. All Rights Reserved.

"""

from torch.optim.lr_scheduler import LRScheduler

from ..core import register


class Warmup(object):
    def __init__(

        self, lr_scheduler: LRScheduler, warmup_duration: int, last_step: int = -1

    ) -> None:
        self.lr_scheduler = lr_scheduler
        self.warmup_end_values = [pg["lr"] for pg in lr_scheduler.optimizer.param_groups]
        self.last_step = last_step
        self.warmup_duration = warmup_duration
        self.step()

    def state_dict(self):
        return {k: v for k, v in self.__dict__.items() if k != "lr_scheduler"}

    def load_state_dict(self, state_dict):
        self.__dict__.update(state_dict)

    def get_warmup_factor(self, step, **kwargs):
        raise NotImplementedError

    def step(

        self,

    ):
        self.last_step += 1
        if self.last_step >= self.warmup_duration:
            return
        factor = self.get_warmup_factor(self.last_step)
        for i, pg in enumerate(self.lr_scheduler.optimizer.param_groups):
            pg["lr"] = factor * self.warmup_end_values[i]

    def finished(

        self,

    ):
        if self.last_step >= self.warmup_duration:
            return True
        return False


@register()
class LinearWarmup(Warmup):
    def __init__(

        self, lr_scheduler: LRScheduler, warmup_duration: int, last_step: int = -1

    ) -> None:
        super().__init__(lr_scheduler, warmup_duration, last_step)

    def get_warmup_factor(self, step):
        return min(1.0, (step + 1) / self.warmup_duration)