File size: 1,325 Bytes
e85fecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""

Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)

Copyright(c) 2023 lyuwenyu. All Rights Reserved.

"""

import torch
import torchvision

from ...core import register
from .utils import IntermediateLayerGetter

__all__ = ["TorchVisionModel"]


@register()
class TorchVisionModel(torch.nn.Module):
    def __init__(self, name, return_layers, weights=None, **kwargs) -> None:
        super().__init__()

        if weights is not None:
            weights = getattr(torchvision.models.get_model_weights(name), weights)

        model = torchvision.models.get_model(name, weights=weights, **kwargs)

        # TODO hard code.
        if hasattr(model, "features"):
            model = IntermediateLayerGetter(model.features, return_layers)
        else:
            model = IntermediateLayerGetter(model, return_layers)

        self.model = model

    def forward(self, x):
        return self.model(x)


# TorchVisionModel('swin_t', return_layers=['5', '7'])
# TorchVisionModel('resnet34', return_layers=['layer2','layer3', 'layer4'])

# TorchVisionModel:
#     name: swin_t
#     return_layers: ['5', '7']
#     weights: DEFAULT


# model:
#     type: TorchVisionModel
#     name: resnet34
#     return_layers: ['layer2','layer3', 'layer4']
#     weights: DEFAULT