File size: 9,379 Bytes
e85fecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
"""

Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)

Copyright(c) 2023 lyuwenyu. All Rights Reserved.

"""

from pathlib import Path
from typing import Callable, Dict, List

import torch
import torch.nn as nn
from torch.cuda.amp.grad_scaler import GradScaler
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LRScheduler
from torch.utils.data import DataLoader, Dataset
from torch.utils.tensorboard import SummaryWriter

__all__ = [
    "BaseConfig",
]


class BaseConfig(object):
    # TODO property

    def __init__(self) -> None:
        super().__init__()

        self.task: str = None

        # instance / function
        self._model: nn.Module = None
        self._postprocessor: nn.Module = None
        self._criterion: nn.Module = None
        self._optimizer: Optimizer = None
        self._lr_scheduler: LRScheduler = None
        self._lr_warmup_scheduler: LRScheduler = None
        self._train_dataloader: DataLoader = None
        self._val_dataloader: DataLoader = None
        self._ema: nn.Module = None
        self._scaler: GradScaler = None
        self._train_dataset: Dataset = None
        self._val_dataset: Dataset = None
        self._collate_fn: Callable = None
        self._evaluator: Callable[[nn.Module, DataLoader, str],] = None
        self._writer: SummaryWriter = None

        # dataset
        self.num_workers: int = 0
        self.batch_size: int = None
        self._train_batch_size: int = None
        self._val_batch_size: int = None
        self._train_shuffle: bool = None
        self._val_shuffle: bool = None

        # runtime
        self.resume: str = None
        self.tuning: str = None

        self.epochs: int = None
        self.last_epoch: int = -1

        self.use_amp: bool = False
        self.use_ema: bool = False
        self.ema_decay: float = 0.9999
        self.ema_warmups: int = 2000
        self.sync_bn: bool = False
        self.clip_max_norm: float = 0.0
        self.find_unused_parameters: bool = None

        self.seed: int = None
        self.print_freq: int = None
        self.checkpoint_freq: int = 1
        self.output_dir: str = None
        self.summary_dir: str = None
        self.device: str = ""

    @property
    def model(self) -> nn.Module:
        return self._model

    @model.setter
    def model(self, m):
        assert isinstance(m, nn.Module), f"{type(m)} != nn.Module, please check your model class"
        self._model = m

    @property
    def postprocessor(self) -> nn.Module:
        return self._postprocessor

    @postprocessor.setter
    def postprocessor(self, m):
        assert isinstance(m, nn.Module), f"{type(m)} != nn.Module, please check your model class"
        self._postprocessor = m

    @property
    def criterion(self) -> nn.Module:
        return self._criterion

    @criterion.setter
    def criterion(self, m):
        assert isinstance(m, nn.Module), f"{type(m)} != nn.Module, please check your model class"
        self._criterion = m

    @property
    def optimizer(self) -> Optimizer:
        return self._optimizer

    @optimizer.setter
    def optimizer(self, m):
        assert isinstance(
            m, Optimizer
        ), f"{type(m)} != optim.Optimizer, please check your model class"
        self._optimizer = m

    @property
    def lr_scheduler(self) -> LRScheduler:
        return self._lr_scheduler

    @lr_scheduler.setter
    def lr_scheduler(self, m):
        assert isinstance(
            m, LRScheduler
        ), f"{type(m)} != LRScheduler, please check your model class"
        self._lr_scheduler = m

    @property
    def lr_warmup_scheduler(self) -> LRScheduler:
        return self._lr_warmup_scheduler

    @lr_warmup_scheduler.setter
    def lr_warmup_scheduler(self, m):
        self._lr_warmup_scheduler = m

    @property
    def train_dataloader(self) -> DataLoader:
        if self._train_dataloader is None and self.train_dataset is not None:
            loader = DataLoader(
                self.train_dataset,
                batch_size=self.train_batch_size,
                num_workers=self.num_workers,
                collate_fn=self.collate_fn,
                shuffle=self.train_shuffle,
            )
            loader.shuffle = self.train_shuffle
            self._train_dataloader = loader

        return self._train_dataloader

    @train_dataloader.setter
    def train_dataloader(self, loader):
        self._train_dataloader = loader

    @property
    def val_dataloader(self) -> DataLoader:
        if self._val_dataloader is None and self.val_dataset is not None:
            loader = DataLoader(
                self.val_dataset,
                batch_size=self.val_batch_size,
                num_workers=self.num_workers,
                drop_last=False,
                collate_fn=self.collate_fn,
                shuffle=self.val_shuffle,
                persistent_workers=True,
            )
            loader.shuffle = self.val_shuffle
            self._val_dataloader = loader

        return self._val_dataloader

    @val_dataloader.setter
    def val_dataloader(self, loader):
        self._val_dataloader = loader

    @property
    def ema(self) -> nn.Module:
        if self._ema is None and self.use_ema and self.model is not None:
            from ..optim import ModelEMA

            self._ema = ModelEMA(self.model, self.ema_decay, self.ema_warmups)
        return self._ema

    @ema.setter
    def ema(self, obj):
        self._ema = obj

    @property
    def scaler(self) -> GradScaler:
        if self._scaler is None and self.use_amp and torch.cuda.is_available():
            self._scaler = GradScaler()
        return self._scaler

    @scaler.setter
    def scaler(self, obj: GradScaler):
        self._scaler = obj

    @property
    def val_shuffle(self) -> bool:
        if self._val_shuffle is None:
            print("warning: set default val_shuffle=False")
            return False
        return self._val_shuffle

    @val_shuffle.setter
    def val_shuffle(self, shuffle):
        assert isinstance(shuffle, bool), "shuffle must be bool"
        self._val_shuffle = shuffle

    @property
    def train_shuffle(self) -> bool:
        if self._train_shuffle is None:
            print("warning: set default train_shuffle=True")
            return True
        return self._train_shuffle

    @train_shuffle.setter
    def train_shuffle(self, shuffle):
        assert isinstance(shuffle, bool), "shuffle must be bool"
        self._train_shuffle = shuffle

    @property
    def train_batch_size(self) -> int:
        if self._train_batch_size is None and isinstance(self.batch_size, int):
            print(f"warning: set train_batch_size=batch_size={self.batch_size}")
            return self.batch_size
        return self._train_batch_size

    @train_batch_size.setter
    def train_batch_size(self, batch_size):
        assert isinstance(batch_size, int), "batch_size must be int"
        self._train_batch_size = batch_size

    @property
    def val_batch_size(self) -> int:
        if self._val_batch_size is None:
            print(f"warning: set val_batch_size=batch_size={self.batch_size}")
            return self.batch_size
        return self._val_batch_size

    @val_batch_size.setter
    def val_batch_size(self, batch_size):
        assert isinstance(batch_size, int), "batch_size must be int"
        self._val_batch_size = batch_size

    @property
    def train_dataset(self) -> Dataset:
        return self._train_dataset

    @train_dataset.setter
    def train_dataset(self, dataset):
        assert isinstance(dataset, Dataset), f"{type(dataset)} must be Dataset"
        self._train_dataset = dataset

    @property
    def val_dataset(self) -> Dataset:
        return self._val_dataset

    @val_dataset.setter
    def val_dataset(self, dataset):
        assert isinstance(dataset, Dataset), f"{type(dataset)} must be Dataset"
        self._val_dataset = dataset

    @property
    def collate_fn(self) -> Callable:
        return self._collate_fn

    @collate_fn.setter
    def collate_fn(self, fn):
        assert isinstance(fn, Callable), f"{type(fn)} must be Callable"
        self._collate_fn = fn

    @property
    def evaluator(self) -> Callable:
        return self._evaluator

    @evaluator.setter
    def evaluator(self, fn):
        assert isinstance(fn, Callable), f"{type(fn)} must be Callable"
        self._evaluator = fn

    @property
    def writer(self) -> SummaryWriter:
        if self._writer is None:
            if self.summary_dir:
                self._writer = SummaryWriter(self.summary_dir)
            elif self.output_dir:
                self._writer = SummaryWriter(Path(self.output_dir) / "summary")
        return self._writer

    @writer.setter
    def writer(self, m):
        assert isinstance(m, SummaryWriter), f"{type(m)} must be SummaryWriter"
        self._writer = m

    def __repr__(self):
        s = ""
        for k, v in self.__dict__.items():
            if not k.startswith("_"):
                s += f"{k}: {v}\n"
        return s