# Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np from typing import Dict, List, Optional, Tuple import torch from torch import nn from detectron2.config import configurable from detectron2.structures import ImageList, Instances from detectron2.utils.events import get_event_storage from detectron2.modeling.backbone import Backbone, build_backbone from detectron2.modeling.meta_arch.build import META_ARCH_REGISTRY from detectron2.modeling.meta_arch import GeneralizedRCNN from detectron2.modeling.postprocessing import detector_postprocess from detectron2.modeling.roi_heads.fast_rcnn import fast_rcnn_inference_single_image from contextlib import contextmanager from itertools import count @META_ARCH_REGISTRY.register() class VLGeneralizedRCNN(GeneralizedRCNN): """ Generalized R-CNN. Any models that contains the following three components: 1. Per-image feature extraction (aka backbone) 2. Region proposal generation 3. Per-region feature extraction and prediction """ def forward(self, batched_inputs: List[Dict[str, torch.Tensor]]): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper` . Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * image: Tensor, image in (C, H, W) format. * instances (optional): groundtruth :class:`Instances` * proposals (optional): :class:`Instances`, precomputed proposals. Other information that's included in the original dicts, such as: * "height", "width" (int): the output resolution of the model, used in inference. See :meth:`postprocess` for details. Returns: list[dict]: Each dict is the output for one input image. The dict contains one key "instances" whose value is a :class:`Instances`. The :class:`Instances` object has the following keys: "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints" """ if not self.training: return self.inference(batched_inputs) images = self.preprocess_image(batched_inputs) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] else: gt_instances = None # features = self.backbone(images.tensor) input = self.get_batch(batched_inputs, images) features = self.backbone(input) if self.proposal_generator is not None: proposals, proposal_losses = self.proposal_generator(images, features, gt_instances) else: assert "proposals" in batched_inputs[0] proposals = [x["proposals"].to(self.device) for x in batched_inputs] proposal_losses = {} _, detector_losses = self.roi_heads(images, features, proposals, gt_instances) if self.vis_period > 0: storage = get_event_storage() if storage.iter % self.vis_period == 0: self.visualize_training(batched_inputs, proposals) losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses def inference( self, batched_inputs: List[Dict[str, torch.Tensor]], detected_instances: Optional[List[Instances]] = None, do_postprocess: bool = True, ): """ Run inference on the given inputs. Args: batched_inputs (list[dict]): same as in :meth:`forward` detected_instances (None or list[Instances]): if not None, it contains an `Instances` object per image. The `Instances` object contains "pred_boxes" and "pred_classes" which are known boxes in the image. The inference will then skip the detection of bounding boxes, and only predict other per-ROI outputs. do_postprocess (bool): whether to apply post-processing on the outputs. Returns: When do_postprocess=True, same as in :meth:`forward`. Otherwise, a list[Instances] containing raw network outputs. """ assert not self.training images = self.preprocess_image(batched_inputs) # features = self.backbone(images.tensor) input = self.get_batch(batched_inputs, images) features = self.backbone(input) if detected_instances is None: if self.proposal_generator is not None: proposals, _ = self.proposal_generator(images, features, None) else: assert "proposals" in batched_inputs[0] proposals = [x["proposals"].to(self.device) for x in batched_inputs] results, _ = self.roi_heads(images, features, proposals, None) else: detected_instances = [x.to(self.device) for x in detected_instances] results = self.roi_heads.forward_with_given_boxes(features, detected_instances) if do_postprocess: assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess." return GeneralizedRCNN._postprocess(results, batched_inputs, images.image_sizes) else: return results def get_batch(self, examples, images): if len(examples) >= 1 and "bbox" not in examples[0]: # image_only return {"images": images.tensor} return input def _batch_inference(self, batched_inputs, detected_instances=None): """ Execute inference on a list of inputs, using batch size = self.batch_size (e.g., 2), instead of the length of the list. Inputs & outputs have the same format as :meth:`GeneralizedRCNN.inference` """ if detected_instances is None: detected_instances = [None] * len(batched_inputs) outputs = [] inputs, instances = [], [] for idx, input, instance in zip(count(), batched_inputs, detected_instances): inputs.append(input) instances.append(instance) if len(inputs) == 2 or idx == len(batched_inputs) - 1: outputs.extend( self.inference( inputs, instances if instances[0] is not None else None, do_postprocess=True, # False ) ) inputs, instances = [], [] return outputs