|
""" |
|
Mostly copy-paste from DINO and timm library: |
|
https://github.com/facebookresearch/dino |
|
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py |
|
""" |
|
import warnings |
|
|
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint as checkpoint |
|
from timm.models.layers import trunc_normal_, drop_path, to_2tuple |
|
from functools import partial |
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', |
|
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), |
|
**kwargs |
|
} |
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
""" |
|
|
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return 'p={}'.format(self.drop_prob) |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, |
|
C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
self.drop_path = DropPath( |
|
drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, drop=drop) |
|
|
|
def forward(self, x): |
|
x = x + self.drop_path(self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
|
|
self.window_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) |
|
|
|
self.num_patches_w, self.num_patches_h = self.window_size |
|
|
|
self.num_patches = self.window_size[0] * self.window_size[1] |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, |
|
kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class HybridEmbed(nn.Module): |
|
""" CNN Feature Map Embedding |
|
Extract feature map from CNN, flatten, project to embedding dim. |
|
""" |
|
|
|
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
assert isinstance(backbone, nn.Module) |
|
img_size = to_2tuple(img_size) |
|
self.img_size = img_size |
|
self.backbone = backbone |
|
if feature_size is None: |
|
with torch.no_grad(): |
|
|
|
|
|
|
|
training = backbone.training |
|
if training: |
|
backbone.eval() |
|
o = self.backbone(torch.zeros( |
|
1, in_chans, img_size[0], img_size[1]))[-1] |
|
feature_size = o.shape[-2:] |
|
feature_dim = o.shape[1] |
|
backbone.train(training) |
|
else: |
|
feature_size = to_2tuple(feature_size) |
|
feature_dim = self.backbone.feature_info.channels()[-1] |
|
self.num_patches = feature_size[0] * feature_size[1] |
|
self.proj = nn.Linear(feature_dim, embed_dim) |
|
|
|
def forward(self, x): |
|
x = self.backbone(x)[-1] |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class ViT(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
|
|
def __init__(self, |
|
model_name='vit_base_patch16_224', |
|
img_size=384, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=1024, |
|
depth=24, |
|
num_heads=16, |
|
num_classes=19, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0.1, |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
hybrid_backbone=None, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
norm_cfg=None, |
|
pos_embed_interp=False, |
|
random_init=False, |
|
align_corners=False, |
|
use_checkpoint=False, |
|
num_extra_tokens=1, |
|
out_features=None, |
|
**kwargs, |
|
): |
|
|
|
super(ViT, self).__init__() |
|
self.model_name = model_name |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
self.depth = depth |
|
self.num_heads = num_heads |
|
self.num_classes = num_classes |
|
self.mlp_ratio = mlp_ratio |
|
self.qkv_bias = qkv_bias |
|
self.qk_scale = qk_scale |
|
self.drop_rate = drop_rate |
|
self.attn_drop_rate = attn_drop_rate |
|
self.drop_path_rate = drop_path_rate |
|
self.hybrid_backbone = hybrid_backbone |
|
self.norm_layer = norm_layer |
|
self.norm_cfg = norm_cfg |
|
self.pos_embed_interp = pos_embed_interp |
|
self.random_init = random_init |
|
self.align_corners = align_corners |
|
self.use_checkpoint = use_checkpoint |
|
self.num_extra_tokens = num_extra_tokens |
|
self.out_features = out_features |
|
self.out_indices = [int(name[5:]) for name in out_features] |
|
|
|
|
|
|
|
|
|
if self.hybrid_backbone is not None: |
|
self.patch_embed = HybridEmbed( |
|
self.hybrid_backbone, img_size=self.img_size, in_chans=self.in_chans, embed_dim=self.embed_dim) |
|
else: |
|
self.patch_embed = PatchEmbed( |
|
img_size=self.img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=self.embed_dim) |
|
self.num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) |
|
|
|
if self.num_extra_tokens == 2: |
|
self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) |
|
|
|
self.pos_embed = nn.Parameter(torch.zeros( |
|
1, self.num_patches + self.num_extra_tokens, self.embed_dim)) |
|
self.pos_drop = nn.Dropout(p=self.drop_rate) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, |
|
self.depth)] |
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=self.embed_dim, num_heads=self.num_heads, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, |
|
qk_scale=self.qk_scale, |
|
drop=self.drop_rate, attn_drop=self.attn_drop_rate, drop_path=dpr[i], norm_layer=self.norm_layer) |
|
for i in range(self.depth)]) |
|
|
|
|
|
|
|
|
|
|
|
if patch_size == 16: |
|
self.fpn1 = nn.Sequential( |
|
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), |
|
nn.SyncBatchNorm(embed_dim), |
|
nn.GELU(), |
|
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), |
|
) |
|
|
|
self.fpn2 = nn.Sequential( |
|
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), |
|
) |
|
|
|
self.fpn3 = nn.Identity() |
|
|
|
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) |
|
elif patch_size == 8: |
|
self.fpn1 = nn.Sequential( |
|
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), |
|
) |
|
|
|
self.fpn2 = nn.Identity() |
|
|
|
self.fpn3 = nn.Sequential( |
|
nn.MaxPool2d(kernel_size=2, stride=2), |
|
) |
|
|
|
self.fpn4 = nn.Sequential( |
|
nn.MaxPool2d(kernel_size=4, stride=4), |
|
) |
|
|
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
if self.num_extra_tokens==2: |
|
trunc_normal_(self.dist_token, std=0.2) |
|
self.apply(self._init_weights) |
|
|
|
|
|
def fix_init_weight(self): |
|
def rescale(param, layer_id): |
|
param.div_(math.sqrt(2.0 * layer_id)) |
|
|
|
for layer_id, layer in enumerate(self.blocks): |
|
rescale(layer.attn.proj.weight.data, layer_id + 1) |
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
''' |
|
def init_weights(self): |
|
logger = get_root_logger() |
|
|
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
self.apply(self._init_weights) |
|
|
|
if self.init_cfg is None: |
|
logger.warn(f'No pre-trained weights for ' |
|
f'{self.__class__.__name__}, ' |
|
f'training start from scratch') |
|
else: |
|
assert 'checkpoint' in self.init_cfg, f'Only support ' \ |
|
f'specify `Pretrained` in ' \ |
|
f'`init_cfg` in ' \ |
|
f'{self.__class__.__name__} ' |
|
logger.info(f"Will load ckpt from {self.init_cfg['checkpoint']}") |
|
load_checkpoint(self, filename=self.init_cfg['checkpoint'], strict=False, logger=logger) |
|
''' |
|
|
|
def get_num_layers(self): |
|
return len(self.blocks) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
def _conv_filter(self, state_dict, patch_size=16): |
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if 'patch_embed.proj.weight' in k: |
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
def to_2D(self, x): |
|
n, hw, c = x.shape |
|
h = w = int(math.sqrt(hw)) |
|
x = x.transpose(1, 2).reshape(n, c, h, w) |
|
return x |
|
|
|
def to_1D(self, x): |
|
n, c, h, w = x.shape |
|
x = x.reshape(n, c, -1).transpose(1, 2) |
|
return x |
|
|
|
def interpolate_pos_encoding(self, x, w, h): |
|
npatch = x.shape[1] - self.num_extra_tokens |
|
N = self.pos_embed.shape[1] - self.num_extra_tokens |
|
if npatch == N and w == h: |
|
return self.pos_embed |
|
|
|
class_ORdist_pos_embed = self.pos_embed[:, 0:self.num_extra_tokens] |
|
|
|
patch_pos_embed = self.pos_embed[:, self.num_extra_tokens:] |
|
|
|
dim = x.shape[-1] |
|
w0 = w // self.patch_embed.patch_size[0] |
|
h0 = h // self.patch_embed.patch_size[1] |
|
|
|
|
|
w0, h0 = w0 + 0.1, h0 + 0.1 |
|
patch_pos_embed = nn.functional.interpolate( |
|
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), |
|
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), |
|
mode='bicubic', |
|
) |
|
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] |
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) |
|
|
|
return torch.cat((class_ORdist_pos_embed, patch_pos_embed), dim=1) |
|
|
|
def prepare_tokens(self, x, mask=None): |
|
B, nc, w, h = x.shape |
|
|
|
x = self.patch_embed(x) |
|
|
|
|
|
if mask is not None: |
|
x = self.mask_model(x, mask) |
|
x = x.flatten(2).transpose(1, 2) |
|
|
|
|
|
all_tokens = [self.cls_token.expand(B, -1, -1)] |
|
|
|
if self.num_extra_tokens == 2: |
|
dist_tokens = self.dist_token.expand(B, -1, -1) |
|
all_tokens.append(dist_tokens) |
|
all_tokens.append(x) |
|
|
|
x = torch.cat(all_tokens, dim=1) |
|
|
|
|
|
x = x + self.interpolate_pos_encoding(x, w, h) |
|
|
|
return self.pos_drop(x) |
|
|
|
def forward_features(self, x): |
|
|
|
B, _, H, W = x.shape |
|
Hp, Wp = H // self.patch_size, W // self.patch_size |
|
x = self.prepare_tokens(x) |
|
|
|
features = [] |
|
for i, blk in enumerate(self.blocks): |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x) |
|
else: |
|
x = blk(x) |
|
if i in self.out_indices: |
|
xp = x[:, self.num_extra_tokens:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp) |
|
features.append(xp.contiguous()) |
|
|
|
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] |
|
for i in range(len(features)): |
|
features[i] = ops[i](features[i]) |
|
|
|
feat_out = {} |
|
|
|
for name, value in zip(self.out_features, features): |
|
feat_out[name] = value |
|
|
|
return feat_out |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
return x |
|
|
|
|
|
def deit_base_patch16(pretrained=False, **kwargs): |
|
model = ViT( |
|
patch_size=16, |
|
drop_rate=0., |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
num_classes=1000, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
use_checkpoint=True, |
|
num_extra_tokens=2, |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
return model |
|
|
|
def mae_base_patch16(pretrained=False, **kwargs): |
|
model = ViT( |
|
patch_size=16, |
|
drop_rate=0., |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
num_classes=1000, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
use_checkpoint=True, |
|
num_extra_tokens=1, |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
return model |