|
""" Vision Transformer (ViT) in PyTorch |
|
|
|
A PyTorch implement of Vision Transformers as described in |
|
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 |
|
|
|
The official jax code is released and available at https://github.com/google-research/vision_transformer |
|
|
|
Status/TODO: |
|
* Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights. |
|
* Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches. |
|
* Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code. |
|
* Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future. |
|
|
|
Acknowledgments: |
|
* The paper authors for releasing code and weights, thanks! |
|
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out |
|
for some einops/einsum fun |
|
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT |
|
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import warnings |
|
import math |
|
import torch |
|
from functools import partial |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from timm.models.layers import drop_path, to_2tuple, trunc_normal_ |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', |
|
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), |
|
**kwargs |
|
} |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
""" |
|
|
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return 'p={}'.format(self.drop_prob) |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
|
|
|
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., |
|
proj_drop=0., window_size=None, attn_head_dim=None): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
|
|
if window_size: |
|
self.window_size = window_size |
|
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 |
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros(self.num_relative_distance, num_heads)) |
|
|
|
|
|
|
|
coords_h = torch.arange(window_size[0]) |
|
coords_w = torch.arange(window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += window_size[0] - 1 |
|
relative_coords[:, :, 1] += window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 |
|
relative_position_index = \ |
|
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) |
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) |
|
relative_position_index[0, 0:] = self.num_relative_distance - 3 |
|
relative_position_index[0:, 0] = self.num_relative_distance - 2 |
|
relative_position_index[0, 0] = self.num_relative_distance - 1 |
|
|
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
|
|
else: |
|
self.window_size = None |
|
self.relative_position_bias_table = None |
|
self.relative_position_index = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, rel_pos_bias=None, training_window_size=None): |
|
B, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) |
|
|
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
if self.relative_position_bias_table is not None: |
|
if training_window_size == self.window_size: |
|
relative_position_bias = \ |
|
self.relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1] + 1, |
|
self.window_size[0] * self.window_size[1] + 1, -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
else: |
|
training_window_size = tuple(training_window_size.tolist()) |
|
new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3 |
|
|
|
new_relative_position_bias_table = F.interpolate( |
|
self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads, |
|
2 * self.window_size[0] - 1, |
|
2 * self.window_size[1] - 1), |
|
size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic', |
|
align_corners=False) |
|
new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads, |
|
new_num_relative_distance - 3).permute( |
|
1, 0) |
|
new_relative_position_bias_table = torch.cat( |
|
[new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0) |
|
|
|
|
|
coords_h = torch.arange(training_window_size[0]) |
|
coords_w = torch.arange(training_window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += training_window_size[0] - 1 |
|
relative_coords[:, :, 1] += training_window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1 |
|
relative_position_index = \ |
|
torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2, |
|
dtype=relative_coords.dtype) |
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) |
|
relative_position_index[0, 0:] = new_num_relative_distance - 3 |
|
relative_position_index[0:, 0] = new_num_relative_distance - 2 |
|
relative_position_index[0, 0] = new_num_relative_distance - 1 |
|
|
|
relative_position_bias = \ |
|
new_relative_position_bias_table[relative_position_index.view(-1)].view( |
|
training_window_size[0] * training_window_size[1] + 1, |
|
training_window_size[0] * training_window_size[1] + 1, -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if rel_pos_bias is not None: |
|
attn = attn + rel_pos_bias |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, |
|
window_size=None, attn_head_dim=None): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
if init_values is not None: |
|
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) |
|
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) |
|
else: |
|
self.gamma_1, self.gamma_2 = None, None |
|
|
|
def forward(self, x, rel_pos_bias=None, training_window_size=None): |
|
if self.gamma_1 is None: |
|
x = x + self.drop_path( |
|
self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, training_window_size=training_window_size)) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, |
|
training_window_size=training_window_size)) |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
|
|
def __init__(self, img_size=[224, 224], patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) |
|
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) |
|
self.num_patches_w = self.patch_shape[0] |
|
self.num_patches_h = self.patch_shape[1] |
|
|
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, x, position_embedding=None, **kwargs): |
|
|
|
|
|
|
|
x = self.proj(x) |
|
Hp, Wp = x.shape[2], x.shape[3] |
|
|
|
if position_embedding is not None: |
|
|
|
position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(0, 3, |
|
1, 2) |
|
position_embedding = F.interpolate(position_embedding, size=(Hp, Wp), mode='bicubic') |
|
x = x + position_embedding |
|
|
|
x = x.flatten(2).transpose(1, 2) |
|
return x, (Hp, Wp) |
|
|
|
|
|
class HybridEmbed(nn.Module): |
|
""" CNN Feature Map Embedding |
|
Extract feature map from CNN, flatten, project to embedding dim. |
|
""" |
|
|
|
def __init__(self, backbone, img_size=[224, 224], feature_size=None, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
assert isinstance(backbone, nn.Module) |
|
img_size = to_2tuple(img_size) |
|
self.img_size = img_size |
|
self.backbone = backbone |
|
if feature_size is None: |
|
with torch.no_grad(): |
|
|
|
|
|
|
|
training = backbone.training |
|
if training: |
|
backbone.eval() |
|
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] |
|
feature_size = o.shape[-2:] |
|
feature_dim = o.shape[1] |
|
backbone.train(training) |
|
else: |
|
feature_size = to_2tuple(feature_size) |
|
feature_dim = self.backbone.feature_info.channels()[-1] |
|
self.num_patches = feature_size[0] * feature_size[1] |
|
self.proj = nn.Linear(feature_dim, embed_dim) |
|
|
|
def forward(self, x): |
|
x = self.backbone(x)[-1] |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class RelativePositionBias(nn.Module): |
|
|
|
def __init__(self, window_size, num_heads): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.num_heads = num_heads |
|
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 |
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros(self.num_relative_distance, num_heads)) |
|
|
|
|
|
|
|
coords_h = torch.arange(window_size[0]) |
|
coords_w = torch.arange(window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += window_size[0] - 1 |
|
relative_coords[:, :, 1] += window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 |
|
relative_position_index = \ |
|
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) |
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) |
|
relative_position_index[0, 0:] = self.num_relative_distance - 3 |
|
relative_position_index[0:, 0] = self.num_relative_distance - 2 |
|
relative_position_index[0, 0] = self.num_relative_distance - 1 |
|
|
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
|
|
|
|
def forward(self, training_window_size): |
|
if training_window_size == self.window_size: |
|
relative_position_bias = \ |
|
self.relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1] + 1, |
|
self.window_size[0] * self.window_size[1] + 1, -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
else: |
|
training_window_size = tuple(training_window_size.tolist()) |
|
new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3 |
|
|
|
new_relative_position_bias_table = F.interpolate( |
|
self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads, |
|
2 * self.window_size[0] - 1, |
|
2 * self.window_size[1] - 1), |
|
size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic', |
|
align_corners=False) |
|
new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads, |
|
new_num_relative_distance - 3).permute( |
|
1, 0) |
|
new_relative_position_bias_table = torch.cat( |
|
[new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0) |
|
|
|
|
|
coords_h = torch.arange(training_window_size[0]) |
|
coords_w = torch.arange(training_window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += training_window_size[0] - 1 |
|
relative_coords[:, :, 1] += training_window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1 |
|
relative_position_index = \ |
|
torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2, |
|
dtype=relative_coords.dtype) |
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) |
|
relative_position_index[0, 0:] = new_num_relative_distance - 3 |
|
relative_position_index[0:, 0] = new_num_relative_distance - 2 |
|
relative_position_index[0, 0] = new_num_relative_distance - 1 |
|
|
|
relative_position_bias = \ |
|
new_relative_position_bias_table[relative_position_index.view(-1)].view( |
|
training_window_size[0] * training_window_size[1] + 1, |
|
training_window_size[0] * training_window_size[1] + 1, -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
|
|
return relative_position_bias |
|
|
|
|
|
class BEiT(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
|
|
def __init__(self, |
|
img_size=[224, 224], |
|
patch_size=16, |
|
in_chans=3, |
|
num_classes=80, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
hybrid_backbone=None, |
|
norm_layer=None, |
|
init_values=None, |
|
use_abs_pos_emb=False, |
|
use_rel_pos_bias=False, |
|
use_shared_rel_pos_bias=False, |
|
use_checkpoint=True, |
|
pretrained=None, |
|
out_features=None, |
|
): |
|
|
|
super(BEiT, self).__init__() |
|
|
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) |
|
self.num_classes = num_classes |
|
self.num_features = self.embed_dim = embed_dim |
|
self.use_checkpoint = use_checkpoint |
|
|
|
if hybrid_backbone is not None: |
|
self.patch_embed = HybridEmbed( |
|
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) |
|
else: |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) |
|
num_patches = self.patch_embed.num_patches |
|
self.out_features = out_features |
|
self.out_indices = [int(name[5:]) for name in out_features] |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
|
|
if use_abs_pos_emb: |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
else: |
|
self.pos_embed = None |
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
self.use_shared_rel_pos_bias = use_shared_rel_pos_bias |
|
if use_shared_rel_pos_bias: |
|
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) |
|
else: |
|
self.rel_pos_bias = None |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.use_rel_pos_bias = use_rel_pos_bias |
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, |
|
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) |
|
for i in range(depth)]) |
|
|
|
|
|
|
|
if patch_size == 16: |
|
self.fpn1 = nn.Sequential( |
|
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), |
|
|
|
nn.BatchNorm2d(embed_dim), |
|
nn.GELU(), |
|
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), |
|
) |
|
|
|
self.fpn2 = nn.Sequential( |
|
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), |
|
) |
|
|
|
self.fpn3 = nn.Identity() |
|
|
|
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) |
|
elif patch_size == 8: |
|
self.fpn1 = nn.Sequential( |
|
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), |
|
) |
|
|
|
self.fpn2 = nn.Identity() |
|
|
|
self.fpn3 = nn.Sequential( |
|
nn.MaxPool2d(kernel_size=2, stride=2), |
|
) |
|
|
|
self.fpn4 = nn.Sequential( |
|
nn.MaxPool2d(kernel_size=4, stride=4), |
|
) |
|
|
|
if self.pos_embed is not None: |
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
self.apply(self._init_weights) |
|
self.fix_init_weight() |
|
|
|
def fix_init_weight(self): |
|
def rescale(param, layer_id): |
|
param.div_(math.sqrt(2.0 * layer_id)) |
|
|
|
for layer_id, layer in enumerate(self.blocks): |
|
rescale(layer.attn.proj.weight.data, layer_id + 1) |
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
''' |
|
def init_weights(self): |
|
"""Initialize the weights in backbone. |
|
|
|
Args: |
|
pretrained (str, optional): Path to pre-trained weights. |
|
Defaults to None. |
|
""" |
|
logger = get_root_logger() |
|
|
|
if self.pos_embed is not None: |
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
self.apply(self._init_weights) |
|
self.fix_init_weight() |
|
|
|
if self.init_cfg is None: |
|
logger.warn(f'No pre-trained weights for ' |
|
f'{self.__class__.__name__}, ' |
|
f'training start from scratch') |
|
else: |
|
assert 'checkpoint' in self.init_cfg, f'Only support ' \ |
|
f'specify `Pretrained` in ' \ |
|
f'`init_cfg` in ' \ |
|
f'{self.__class__.__name__} ' |
|
logger.info(f"Will load ckpt from {self.init_cfg['checkpoint']}") |
|
load_checkpoint(self, |
|
filename=self.init_cfg['checkpoint'], |
|
strict=False, |
|
logger=logger, |
|
beit_spec_expand_rel_pos = self.use_rel_pos_bias, |
|
) |
|
''' |
|
|
|
def get_num_layers(self): |
|
return len(self.blocks) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
def forward_features(self, x): |
|
B, C, H, W = x.shape |
|
x, (Hp, Wp) = self.patch_embed(x, self.pos_embed[:, 1:, :] if self.pos_embed is not None else None) |
|
|
|
batch_size, seq_len, _ = x.size() |
|
|
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1) |
|
if self.pos_embed is not None: |
|
cls_tokens = cls_tokens + self.pos_embed[:, :1, :] |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x = self.pos_drop(x) |
|
|
|
features = [] |
|
training_window_size = torch.tensor([Hp, Wp]) |
|
|
|
rel_pos_bias = self.rel_pos_bias(training_window_size) if self.rel_pos_bias is not None else None |
|
|
|
for i, blk in enumerate(self.blocks): |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x, rel_pos_bias, training_window_size) |
|
else: |
|
x = blk(x, rel_pos_bias=rel_pos_bias, training_window_size=training_window_size) |
|
if i in self.out_indices: |
|
xp = x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp) |
|
features.append(xp.contiguous()) |
|
|
|
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] |
|
for i in range(len(features)): |
|
features[i] = ops[i](features[i]) |
|
|
|
feat_out = {} |
|
|
|
for name, value in zip(self.out_features, features): |
|
feat_out[name] = value |
|
|
|
return feat_out |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
return x |
|
|
|
|
|
def beit_base_patch16(pretrained=False, **kwargs): |
|
model = BEiT( |
|
patch_size=16, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
init_values=None, |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
return model |
|
|
|
def beit_large_patch16(pretrained=False, **kwargs): |
|
model = BEiT( |
|
patch_size=16, |
|
embed_dim=1024, |
|
depth=24, |
|
num_heads=16, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
init_values=None, |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
return model |
|
|
|
def dit_base_patch16(pretrained=False, **kwargs): |
|
model = BEiT( |
|
patch_size=16, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
init_values=0.1, |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
return model |
|
|
|
def dit_large_patch16(pretrained=False, **kwargs): |
|
model = BEiT( |
|
patch_size=16, |
|
embed_dim=1024, |
|
depth=24, |
|
num_heads=16, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
init_values=1e-5, |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
return model |
|
|
|
if __name__ == '__main__': |
|
model = BEiT(use_checkpoint=True, use_shared_rel_pos_bias=True) |
|
model = model.to("cuda:0") |
|
input1 = torch.rand(2, 3, 512, 762).to("cuda:0") |
|
input2 = torch.rand(2, 3, 800, 1200).to("cuda:0") |
|
input3 = torch.rand(2, 3, 720, 1000).to("cuda:0") |
|
output1 = model(input1) |
|
output2 = model(input2) |
|
output3 = model(input3) |
|
print("all done") |
|
|