import gradio as gr from fastai.vision.all import * def greet(name): return "Hello " + name + "!!" learn = load_learner("model.pkl"); def is_cat(x): return x[0].isupper() categories = {"No_Cat","Cat"} def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = ["WX20240713-091831@2x.png","WX20240713-091821@2x.png","WX20240713-091430@2x.png","WX20240713-090252@2x.png"] intf = gr.Interface(fn=classify_image,inputs = image,outputs = label,examples = examples) intf.launch(inline=False) demo = gr.Interface(fn=greet, inputs="text", outputs="text") demo.launch()