Update app.py
Browse files
app.py
CHANGED
@@ -1,158 +1,79 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import torch
|
4 |
import streamlit as st
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
# ==============================
|
9 |
-
# ⚙️ CONFIGURABLE PARAMETERS
|
10 |
-
# ==============================
|
11 |
-
MODEL_PATH = "dejanseo/bulgarian-search-query-intent-alpha" # HF model repository
|
12 |
-
LABEL_MAP_PATH = "label_map.json" # Ensure this file is in the same directory as app.py
|
13 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
-
#
|
16 |
-
# 📌 Load Model and Tokenizer
|
17 |
-
# ==============================
|
18 |
@st.cache_resource
|
19 |
-
def
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
# ==============================
|
38 |
-
def predict_intent(query, model, tokenizer, id_to_label):
|
39 |
-
"""
|
40 |
-
Predict the intent of a Bulgarian search query.
|
41 |
-
"""
|
42 |
-
# Tokenize input text
|
43 |
-
inputs = tokenizer(
|
44 |
-
query,
|
45 |
-
padding="max_length",
|
46 |
-
truncation=True,
|
47 |
-
max_length=128,
|
48 |
-
return_tensors="pt"
|
49 |
-
)
|
50 |
-
|
51 |
-
# Move inputs to the same device as the model
|
52 |
-
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
53 |
-
|
54 |
-
# Inference without gradient tracking
|
55 |
-
with torch.no_grad():
|
56 |
-
outputs = model(**inputs)
|
57 |
-
|
58 |
-
# Compute probabilities with softmax
|
59 |
-
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
60 |
-
|
61 |
-
# Identify the predicted class and confidence
|
62 |
-
predicted_class_id = torch.argmax(probabilities).item()
|
63 |
-
predicted_intent = id_to_label[predicted_class_id]
|
64 |
-
confidence = probabilities[predicted_class_id].item()
|
65 |
-
|
66 |
-
# Build a dictionary with all intent scores
|
67 |
-
all_intents = {id_to_label[i]: prob.item() for i, prob in enumerate(probabilities)}
|
68 |
-
sorted_intents = sorted(all_intents.items(), key=lambda x: x[1], reverse=True)
|
69 |
-
|
70 |
-
return {
|
71 |
-
"query": query,
|
72 |
-
"predicted_intent": predicted_intent,
|
73 |
-
"confidence": confidence,
|
74 |
-
"all_scores": sorted_intents
|
75 |
-
}
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
model, tokenizer, label_to_id, id_to_label = load_inference_resources()
|
86 |
-
st.success(f"✅ Model loaded successfully! Found {len(id_to_label)} intent classes.")
|
87 |
-
|
88 |
-
# Show available intents
|
89 |
-
with st.expander("Available Intent Classes"):
|
90 |
-
st.write(", ".join(id_to_label.values()))
|
91 |
-
|
92 |
-
# Single query inference
|
93 |
-
query = st.text_input("Enter a Bulgarian search query:", "Как да направя резервация за ресторант?")
|
94 |
-
|
95 |
-
if st.button("Predict Intent"):
|
96 |
-
with st.spinner("Analyzing query..."):
|
97 |
-
prediction = predict_intent(query, model, tokenizer, id_to_label)
|
98 |
-
|
99 |
-
st.subheader("Prediction Results")
|
100 |
-
st.metric(
|
101 |
-
label="Predicted Intent",
|
102 |
-
value=prediction["predicted_intent"],
|
103 |
-
delta=f"{prediction['confidence']*100:.2f}% confidence"
|
104 |
-
)
|
105 |
-
|
106 |
-
st.subheader("Intent Probabilities")
|
107 |
-
df_probs = pd.DataFrame(prediction["all_scores"], columns=["Intent", "Probability"])
|
108 |
-
df_top5 = df_probs.head(5)
|
109 |
-
st.bar_chart(df_top5.set_index("Intent"))
|
110 |
-
|
111 |
-
with st.expander("View All Intent Probabilities"):
|
112 |
-
st.dataframe(df_probs)
|
113 |
-
|
114 |
-
# Batch inference section
|
115 |
-
st.subheader("Batch Inference")
|
116 |
-
uploaded_file = st.file_uploader("Upload a CSV/Excel file with queries", type=["csv", "xlsx", "parquet"])
|
117 |
-
|
118 |
-
if uploaded_file is not None:
|
119 |
-
if uploaded_file.name.endswith(".csv"):
|
120 |
-
df = pd.read_csv(uploaded_file)
|
121 |
-
elif uploaded_file.name.endswith(".xlsx"):
|
122 |
-
df = pd.read_excel(uploaded_file)
|
123 |
-
elif uploaded_file.name.endswith(".parquet"):
|
124 |
-
df = pd.read_parquet(uploaded_file)
|
125 |
-
|
126 |
-
query_column = "query" if "query" in df.columns else st.selectbox("Select the column containing queries:", df.columns)
|
127 |
-
|
128 |
-
if query_column and st.button("Run Batch Inference"):
|
129 |
-
progress_bar = st.progress(0)
|
130 |
-
results = []
|
131 |
-
|
132 |
-
for i, row in enumerate(df[query_column]):
|
133 |
-
progress_bar.progress((i + 1) / len(df))
|
134 |
-
prediction = predict_intent(row, model, tokenizer, id_to_label)
|
135 |
-
results.append({
|
136 |
-
"query": row,
|
137 |
-
"predicted_intent": prediction["predicted_intent"],
|
138 |
-
"confidence": prediction["confidence"]
|
139 |
-
})
|
140 |
-
|
141 |
-
results_df = pd.DataFrame(results)
|
142 |
-
st.subheader("Batch Inference Results")
|
143 |
-
st.dataframe(results_df)
|
144 |
-
|
145 |
-
csv = results_df.to_csv(index=False)
|
146 |
-
st.download_button(
|
147 |
-
label="Download Results as CSV",
|
148 |
-
data=csv,
|
149 |
-
file_name="batch_inference_results.csv",
|
150 |
-
mime="text/csv"
|
151 |
-
)
|
152 |
-
|
153 |
-
except Exception as e:
|
154 |
-
st.error(f"❌ Error loading model: {str(e)}")
|
155 |
-
st.error("Please ensure the model and label map files are available.")
|
156 |
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Load model and tokenizer from Hugging Face Hub
|
|
|
|
|
7 |
@st.cache_resource
|
8 |
+
def load_model_and_tokenizer():
|
9 |
+
model_name = "dejanseo/bulgarian-search-query-intent"
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
return model, tokenizer
|
13 |
+
|
14 |
+
# Load resources
|
15 |
+
model, tokenizer = load_model_and_tokenizer()
|
16 |
+
|
17 |
+
st.title("Класификация на намерения за търсене (Български)")
|
18 |
+
st.write(
|
19 |
+
"Въведете една или повече заявки (всеки на нов ред) или качете `.txt` файл, в който "
|
20 |
+
"всяка заявка е на отделен ред без допълнителни параметри."
|
21 |
+
)
|
22 |
+
|
23 |
+
# Display author info
|
24 |
+
st.markdown(
|
25 |
+
"### Моделът е създаден от [DEJAN AI](https://dejan.ai)"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Текстово поле за въвеждане на заявки
|
29 |
+
queries_input = st.text_area("Въведете вашите заявки (по една на ред):")
|
30 |
+
|
31 |
+
# Качване на `.txt` файл
|
32 |
+
uploaded_file = st.file_uploader(
|
33 |
+
"Качете `.txt` файл с заявки (всеки ред съдържа една заявка)", type=["txt"]
|
34 |
+
)
|
35 |
+
|
36 |
+
# Събиране на заявките от текстовото поле и/или файла
|
37 |
+
queries = []
|
38 |
+
if queries_input.strip():
|
39 |
+
queries.extend([line.strip() for line in queries_input.splitlines() if line.strip()])
|
40 |
+
if uploaded_file is not None:
|
41 |
+
file_content = uploaded_file.read().decode("utf-8")
|
42 |
+
queries.extend([line.strip() for line in file_content.splitlines() if line.strip()])
|
43 |
+
|
44 |
+
if st.button("Класифицирай"):
|
45 |
+
if queries:
|
46 |
+
# Tokenize in batch
|
47 |
+
inputs = tokenizer(
|
48 |
+
queries,
|
49 |
+
return_tensors="pt",
|
50 |
+
truncation=True,
|
51 |
+
padding=True,
|
52 |
+
max_length=256
|
53 |
+
)
|
54 |
+
|
55 |
+
# Run inference
|
56 |
+
with torch.no_grad():
|
57 |
+
outputs = model(**inputs)
|
58 |
+
|
59 |
+
logits = outputs.logits
|
60 |
+
predictions = logits.argmax(dim=-1).tolist()
|
61 |
+
probabilities = F.softmax(logits, dim=-1)
|
62 |
+
confidence_scores = probabilities.max(dim=-1).values.tolist()
|
63 |
|
64 |
+
# Използване на наличната label mapping от модела
|
65 |
+
id2label = model.config.id2label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
results = []
|
68 |
+
for query, pred, conf in zip(queries, predictions, confidence_scores):
|
69 |
+
predicted_label = id2label.get(str(pred), id2label.get(pred, "Неизвестно"))
|
70 |
+
results.append({
|
71 |
+
"Заявка": query,
|
72 |
+
"Предсказано намерение": predicted_label,
|
73 |
+
"Доверие": f"{conf:.2f}"
|
74 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
st.write("### Резултати:")
|
77 |
+
st.table(results)
|
78 |
+
else:
|
79 |
+
st.warning("Моля, въведете поне една заявка, преди да класифицирате.")
|