Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
import streamlit as st
|
5 |
+
import pandas as pd
|
6 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
7 |
+
|
8 |
+
# ==============================
|
9 |
+
# ⚙️ CONFIGURABLE PARAMETERS
|
10 |
+
# ==============================
|
11 |
+
MODEL_PATH = "dejanseo/bulgarian-search-query-intent-alpha" # HF model repository
|
12 |
+
LABEL_MAP_PATH = "label_map.json" # Ensure this file is in the same directory as app.py
|
13 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
|
15 |
+
# ==============================
|
16 |
+
# 📌 Load Model and Tokenizer
|
17 |
+
# ==============================
|
18 |
+
@st.cache_resource
|
19 |
+
def load_inference_resources():
|
20 |
+
# Load the label mapping from local file
|
21 |
+
with open(LABEL_MAP_PATH, "r") as f:
|
22 |
+
label_map = json.load(f)
|
23 |
+
|
24 |
+
# Convert ID keys from string to int for id_to_label mapping
|
25 |
+
id_to_label = {int(k): v for k, v in label_map["id_to_label"].items()}
|
26 |
+
|
27 |
+
# Load the tokenizer and model from Hugging Face
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
29 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
|
30 |
+
model.to(DEVICE)
|
31 |
+
model.eval() # Set model to evaluation mode
|
32 |
+
|
33 |
+
return model, tokenizer, label_map["label_to_id"], id_to_label
|
34 |
+
|
35 |
+
# ==============================
|
36 |
+
# 📌 Inference Function
|
37 |
+
# ==============================
|
38 |
+
def predict_intent(query, model, tokenizer, id_to_label):
|
39 |
+
"""
|
40 |
+
Predict the intent of a Bulgarian search query.
|
41 |
+
"""
|
42 |
+
# Tokenize input text
|
43 |
+
inputs = tokenizer(
|
44 |
+
query,
|
45 |
+
padding="max_length",
|
46 |
+
truncation=True,
|
47 |
+
max_length=128,
|
48 |
+
return_tensors="pt"
|
49 |
+
)
|
50 |
+
|
51 |
+
# Move inputs to the same device as the model
|
52 |
+
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
53 |
+
|
54 |
+
# Inference without gradient tracking
|
55 |
+
with torch.no_grad():
|
56 |
+
outputs = model(**inputs)
|
57 |
+
|
58 |
+
# Compute probabilities with softmax
|
59 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
60 |
+
|
61 |
+
# Identify the predicted class and confidence
|
62 |
+
predicted_class_id = torch.argmax(probabilities).item()
|
63 |
+
predicted_intent = id_to_label[predicted_class_id]
|
64 |
+
confidence = probabilities[predicted_class_id].item()
|
65 |
+
|
66 |
+
# Build a dictionary with all intent scores
|
67 |
+
all_intents = {id_to_label[i]: prob.item() for i, prob in enumerate(probabilities)}
|
68 |
+
sorted_intents = sorted(all_intents.items(), key=lambda x: x[1], reverse=True)
|
69 |
+
|
70 |
+
return {
|
71 |
+
"query": query,
|
72 |
+
"predicted_intent": predicted_intent,
|
73 |
+
"confidence": confidence,
|
74 |
+
"all_scores": sorted_intents
|
75 |
+
}
|
76 |
+
|
77 |
+
# ==============================
|
78 |
+
# 🌟 Streamlit UI for Inference
|
79 |
+
# ==============================
|
80 |
+
def inference_ui():
|
81 |
+
st.title("🔍 Bulgarian Search Intent Classification")
|
82 |
+
|
83 |
+
try:
|
84 |
+
# Load resources
|
85 |
+
model, tokenizer, label_to_id, id_to_label = load_inference_resources()
|
86 |
+
st.success(f"✅ Model loaded successfully! Found {len(id_to_label)} intent classes.")
|
87 |
+
|
88 |
+
# Show available intents
|
89 |
+
with st.expander("Available Intent Classes"):
|
90 |
+
st.write(", ".join(id_to_label.values()))
|
91 |
+
|
92 |
+
# Single query inference
|
93 |
+
query = st.text_input("Enter a Bulgarian search query:", "Как да направя резервация за ресторант?")
|
94 |
+
|
95 |
+
if st.button("Predict Intent"):
|
96 |
+
with st.spinner("Analyzing query..."):
|
97 |
+
prediction = predict_intent(query, model, tokenizer, id_to_label)
|
98 |
+
|
99 |
+
st.subheader("Prediction Results")
|
100 |
+
st.metric(
|
101 |
+
label="Predicted Intent",
|
102 |
+
value=prediction["predicted_intent"],
|
103 |
+
delta=f"{prediction['confidence']*100:.2f}% confidence"
|
104 |
+
)
|
105 |
+
|
106 |
+
st.subheader("Intent Probabilities")
|
107 |
+
df_probs = pd.DataFrame(prediction["all_scores"], columns=["Intent", "Probability"])
|
108 |
+
df_top5 = df_probs.head(5)
|
109 |
+
st.bar_chart(df_top5.set_index("Intent"))
|
110 |
+
|
111 |
+
with st.expander("View All Intent Probabilities"):
|
112 |
+
st.dataframe(df_probs)
|
113 |
+
|
114 |
+
# Batch inference section
|
115 |
+
st.subheader("Batch Inference")
|
116 |
+
uploaded_file = st.file_uploader("Upload a CSV/Excel file with queries", type=["csv", "xlsx", "parquet"])
|
117 |
+
|
118 |
+
if uploaded_file is not None:
|
119 |
+
if uploaded_file.name.endswith(".csv"):
|
120 |
+
df = pd.read_csv(uploaded_file)
|
121 |
+
elif uploaded_file.name.endswith(".xlsx"):
|
122 |
+
df = pd.read_excel(uploaded_file)
|
123 |
+
elif uploaded_file.name.endswith(".parquet"):
|
124 |
+
df = pd.read_parquet(uploaded_file)
|
125 |
+
|
126 |
+
query_column = "query" if "query" in df.columns else st.selectbox("Select the column containing queries:", df.columns)
|
127 |
+
|
128 |
+
if query_column and st.button("Run Batch Inference"):
|
129 |
+
progress_bar = st.progress(0)
|
130 |
+
results = []
|
131 |
+
|
132 |
+
for i, row in enumerate(df[query_column]):
|
133 |
+
progress_bar.progress((i + 1) / len(df))
|
134 |
+
prediction = predict_intent(row, model, tokenizer, id_to_label)
|
135 |
+
results.append({
|
136 |
+
"query": row,
|
137 |
+
"predicted_intent": prediction["predicted_intent"],
|
138 |
+
"confidence": prediction["confidence"]
|
139 |
+
})
|
140 |
+
|
141 |
+
results_df = pd.DataFrame(results)
|
142 |
+
st.subheader("Batch Inference Results")
|
143 |
+
st.dataframe(results_df)
|
144 |
+
|
145 |
+
csv = results_df.to_csv(index=False)
|
146 |
+
st.download_button(
|
147 |
+
label="Download Results as CSV",
|
148 |
+
data=csv,
|
149 |
+
file_name="batch_inference_results.csv",
|
150 |
+
mime="text/csv"
|
151 |
+
)
|
152 |
+
|
153 |
+
except Exception as e:
|
154 |
+
st.error(f"❌ Error loading model: {str(e)}")
|
155 |
+
st.error("Please ensure the model and label map files are available.")
|
156 |
+
|
157 |
+
if __name__ == "__main__":
|
158 |
+
inference_ui()
|