Spaces:
Sleeping
Sleeping
update
Browse files- model_factory.py +6 -136
- models/blocks.py +0 -924
- models/heads.py +0 -270
- models/ram.py +854 -0
- models/unext_wip.py +0 -1238
model_factory.py
CHANGED
@@ -1,103 +1,7 @@
|
|
1 |
import torch
|
2 |
-
|
3 |
-
import deepinv as dinv
|
4 |
|
5 |
-
|
6 |
-
from physics.multiscale import Pad
|
7 |
-
|
8 |
-
|
9 |
-
class ArtifactRemoval(nn.Module):
|
10 |
-
r"""
|
11 |
-
Artifact removal architecture :math:`\phi(A^{\top}y)`.
|
12 |
-
|
13 |
-
This differs from the dinv.models.ArtifactRemoval in that it allows to forward the physics.
|
14 |
-
|
15 |
-
In the end we should not use this for unext !!
|
16 |
-
"""
|
17 |
-
|
18 |
-
def __init__(self, backbone_net, pinv=False, ckpt_path=None, device=None, fm_mode=False):
|
19 |
-
super(ArtifactRemoval, self).__init__()
|
20 |
-
self.pinv = pinv
|
21 |
-
self.backbone_net = backbone_net
|
22 |
-
self.fm_mode = fm_mode
|
23 |
-
|
24 |
-
if ckpt_path is not None:
|
25 |
-
self.backbone_net.load_state_dict(torch.load(ckpt_path), strict=True)
|
26 |
-
self.backbone_net.eval()
|
27 |
-
|
28 |
-
if type(self.backbone_net).__name__ == "UNetRes":
|
29 |
-
for _, v in self.backbone_net.named_parameters():
|
30 |
-
v.requires_grad = False
|
31 |
-
self.backbone_net = self.backbone_net.to(device)
|
32 |
-
|
33 |
-
|
34 |
-
def forward_basic(self, y=None, physics=None, x_in=None, t=None, **kwargs):
|
35 |
-
r"""
|
36 |
-
Reconstructs a signal estimate from measurements y
|
37 |
-
|
38 |
-
:param torch.tensor y: measurements
|
39 |
-
:param deepinv.physics.Physics physics: forward operator
|
40 |
-
"""
|
41 |
-
if physics is None:
|
42 |
-
physics = dinv.physics.Denoising(noise_model=dinv.physics.GaussianNoise(sigma=0.), device=y.device)
|
43 |
-
|
44 |
-
if not self.training:
|
45 |
-
x_temp = physics.A_adjoint(y)
|
46 |
-
pad = (-x_temp.size(-2) % 8, -x_temp.size(-1) % 8)
|
47 |
-
physics = Pad(physics, pad)
|
48 |
-
|
49 |
-
x_in = physics.A_adjoint(y) if not self.pinv else physics.A_dagger(y)
|
50 |
-
|
51 |
-
if hasattr(physics.noise_model, "sigma"):
|
52 |
-
sigma = physics.noise_model.sigma
|
53 |
-
else:
|
54 |
-
sigma = 1e-5 # WARNING: this is a default value that we may not want to use?
|
55 |
-
|
56 |
-
if hasattr(physics.noise_model, "gain"):
|
57 |
-
gamma = physics.noise_model.gain
|
58 |
-
else:
|
59 |
-
gamma = 1e-5 # WARNING: this is a default value that we may not want to use?
|
60 |
-
|
61 |
-
out = self.backbone_net(x_in, physics=physics, y=y, sigma=sigma, gamma=gamma, t=t)
|
62 |
-
|
63 |
-
if not self.training:
|
64 |
-
out = physics.remove_pad(out)
|
65 |
-
|
66 |
-
return out
|
67 |
-
|
68 |
-
def forward(self, y=None, physics=None, x_in=None, **kwargs):
|
69 |
-
if 'unext' in type(self.backbone_net).__name__.lower():
|
70 |
-
return self.forward_basic(physics=physics, y=y, x_in=x_in, **kwargs)
|
71 |
-
else:
|
72 |
-
return self.backbone_net(physics=physics, y=y, **kwargs)
|
73 |
-
|
74 |
-
|
75 |
-
def get_model(
|
76 |
-
model_name="unext_emb_physics_config_C",
|
77 |
-
device="cpu",
|
78 |
-
in_channels=[1, 2, 3],
|
79 |
-
grayscale=False,
|
80 |
-
conv_type="base",
|
81 |
-
pool_type="base",
|
82 |
-
layer_scale_init_value=1e-6,
|
83 |
-
init_type="ortho",
|
84 |
-
gain_init_conv=1.0,
|
85 |
-
gain_init_linear=1.0,
|
86 |
-
drop_prob=0.0,
|
87 |
-
replk=False,
|
88 |
-
mult_fact=4,
|
89 |
-
antialias="gaussian",
|
90 |
-
nc_base=64,
|
91 |
-
cond_type="base",
|
92 |
-
blind=False,
|
93 |
-
pretrained_pth=None,
|
94 |
-
weight_tied=True,
|
95 |
-
N=4,
|
96 |
-
c_mult=1,
|
97 |
-
depth_encoding=1,
|
98 |
-
relu_in_encoding=False,
|
99 |
-
skip_in_encoding=True,
|
100 |
-
):
|
101 |
"""
|
102 |
Load the model.
|
103 |
|
@@ -107,41 +11,7 @@ def get_model(
|
|
107 |
:param bool train: if True, the model is trained
|
108 |
:return: model
|
109 |
"""
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
residual = True if "residual" in model_name else False
|
115 |
-
nc = [nc_base * 2**i for i in range(4)]
|
116 |
-
|
117 |
-
|
118 |
-
model = UNeXt(
|
119 |
-
in_channels=in_channels,
|
120 |
-
out_channels=in_channels,
|
121 |
-
device=device,
|
122 |
-
residual=residual,
|
123 |
-
conv_type=conv_type,
|
124 |
-
pool_type=pool_type,
|
125 |
-
layer_scale_init_value=layer_scale_init_value,
|
126 |
-
init_type=init_type,
|
127 |
-
gain_init_conv=gain_init_conv,
|
128 |
-
gain_init_linear=gain_init_linear,
|
129 |
-
drop_prob=drop_prob,
|
130 |
-
replk=replk,
|
131 |
-
mult_fact=mult_fact,
|
132 |
-
antialias=antialias,
|
133 |
-
nc=nc,
|
134 |
-
cond_type=cond_type,
|
135 |
-
emb_physics=True,
|
136 |
-
config="C",
|
137 |
-
pretrained_pth=pretrained_pth,
|
138 |
-
N=N,
|
139 |
-
c_mult=c_mult,
|
140 |
-
depth_encoding=depth_encoding,
|
141 |
-
relu_in_encoding=relu_in_encoding,
|
142 |
-
skip_in_encoding=skip_in_encoding,
|
143 |
-
).to(device)
|
144 |
-
return ArtifactRemoval(model, pinv=False, device=device)
|
145 |
-
|
146 |
-
else:
|
147 |
-
raise ValueError(f"Model {model_name} is not supported.")
|
|
|
1 |
import torch
|
2 |
+
from models.ram import RAM
|
|
|
3 |
|
4 |
+
def get_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"""
|
6 |
Load the model.
|
7 |
|
|
|
11 |
:param bool train: if True, the model is trained
|
12 |
:return: model
|
13 |
"""
|
14 |
+
model = RAM()
|
15 |
+
state_dict = torch.load('ckpt/ram.pth.tar')
|
16 |
+
model.load_state_dict(state_dict)
|
17 |
+
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/blocks.py
DELETED
@@ -1,924 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
import torch.nn.functional as F
|
7 |
-
from deepinv.models.unet import BFBatchNorm2d
|
8 |
-
from deepinv.physics.blur import gaussian_blur
|
9 |
-
from deepinv.physics.functional import conv2d
|
10 |
-
from deepinv.utils import TensorList
|
11 |
-
|
12 |
-
from timm.models.layers import trunc_normal_, DropPath
|
13 |
-
|
14 |
-
|
15 |
-
def normalize(x, dim=None, eps=1e-4):
|
16 |
-
if dim is None:
|
17 |
-
dim = list(range(1, x.ndim))
|
18 |
-
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
|
19 |
-
norm = torch.add(eps, norm, alpha=np.sqrt(norm.numel() / x.numel()))
|
20 |
-
return x / norm.to(x.dtype)
|
21 |
-
|
22 |
-
|
23 |
-
class TimestepEmbedding(nn.Module):
|
24 |
-
def __init__(self, hidden_size, frequency_embedding_size=256):
|
25 |
-
super().__init__()
|
26 |
-
self.mlp = nn.Sequential(
|
27 |
-
nn.Linear(frequency_embedding_size, hidden_size),
|
28 |
-
nn.SiLU(),
|
29 |
-
nn.Linear(hidden_size, hidden_size),
|
30 |
-
)
|
31 |
-
self.frequency_embedding_size = frequency_embedding_size
|
32 |
-
|
33 |
-
@staticmethod
|
34 |
-
def timestep_embedding(t, dim, max_period=10000):
|
35 |
-
half = dim // 2
|
36 |
-
freqs = torch.exp(
|
37 |
-
-math.log(max_period) * torch.arange(start=0, end=half) / half
|
38 |
-
).to(t.device)
|
39 |
-
args = t[:, None] * freqs[None]
|
40 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
41 |
-
if dim % 2:
|
42 |
-
embedding = torch.cat(
|
43 |
-
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
44 |
-
)
|
45 |
-
return embedding
|
46 |
-
|
47 |
-
def forward(self, t):
|
48 |
-
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(
|
49 |
-
dtype=next(self.parameters()).dtype
|
50 |
-
)
|
51 |
-
t_emb = self.mlp(t_freq)
|
52 |
-
return t_emb
|
53 |
-
|
54 |
-
|
55 |
-
class MPConv(torch.nn.Module):
|
56 |
-
def __init__(self, in_channels, out_channels, kernel):
|
57 |
-
super().__init__()
|
58 |
-
self.out_channels = out_channels
|
59 |
-
self.weight = torch.nn.Parameter(torch.randn(out_channels, in_channels, *kernel))
|
60 |
-
|
61 |
-
def forward(self, x, gain=1):
|
62 |
-
w = self.weight.to(torch.float32)
|
63 |
-
if self.training:
|
64 |
-
with torch.no_grad():
|
65 |
-
self.weight.copy_(normalize(w)) # forced weight normalization
|
66 |
-
w = normalize(w) # traditional weight normalization
|
67 |
-
w = w * (gain / np.sqrt(w[0].numel())) # magnitude-preserving scaling
|
68 |
-
w = w.to(x.dtype)
|
69 |
-
if w.ndim == 2:
|
70 |
-
return x @ w.t()
|
71 |
-
assert w.ndim == 4
|
72 |
-
return F.conv2d(x, w, padding=(w.shape[-1] // 2,))
|
73 |
-
|
74 |
-
|
75 |
-
# --------------------------------------------------------------------------------------
|
76 |
-
def mp_silu(x):
|
77 |
-
return torch.nn.functional.silu(x) / 0.596
|
78 |
-
|
79 |
-
|
80 |
-
class MPFourier(torch.nn.Module):
|
81 |
-
def __init__(self, num_channels, bandwidth=1, device="cpu"):
|
82 |
-
super().__init__()
|
83 |
-
self.register_buffer(
|
84 |
-
"freqs", 2 * np.pi * torch.rand(num_channels, device=device) * bandwidth
|
85 |
-
)
|
86 |
-
self.register_buffer(
|
87 |
-
"phases", 2 * np.pi * torch.rand(num_channels, device=device)
|
88 |
-
)
|
89 |
-
|
90 |
-
def forward(self, x):
|
91 |
-
y = x.to(torch.float32)
|
92 |
-
y = y.ger(self.freqs.to(torch.float32))
|
93 |
-
y = y + self.phases.to(torch.float32)
|
94 |
-
y = y.cos() * np.sqrt(2)
|
95 |
-
return y.to(x.dtype)
|
96 |
-
|
97 |
-
|
98 |
-
class NoiseEmbedding(torch.nn.Module):
|
99 |
-
def __init__(self, num_channels=1, emb_channels=512, device="cpu", biasfree=True):
|
100 |
-
super().__init__()
|
101 |
-
self.emb_fourier = MPFourier(num_channels, device=device)
|
102 |
-
self.emb_noise = MPConv(num_channels, emb_channels, kernel=[])
|
103 |
-
self.biasfree = biasfree
|
104 |
-
|
105 |
-
def forward(self, y, physics, factor):
|
106 |
-
if hasattr(physics, "noise_model") and not callable(physics.noise_model):
|
107 |
-
sigma = getattr(physics.noise_model, "sigma", 0.0)
|
108 |
-
else:
|
109 |
-
sigma = 0.0
|
110 |
-
|
111 |
-
if isinstance(y, TensorList):
|
112 |
-
sigma = sigma / (y[0].abs().reshape(y[0].size(0),-1).mean(1) + 1e-8) / factor
|
113 |
-
else:
|
114 |
-
sigma = sigma / (y.abs().reshape(y.size(0),-1).mean(1) + 1e-8) / factor
|
115 |
-
emb_four = self.emb_fourier(sigma)
|
116 |
-
emb = self.emb_noise(emb_four)
|
117 |
-
if self.biasfree:
|
118 |
-
emb = F.relu(emb)
|
119 |
-
else:
|
120 |
-
emb = mp_silu(emb)
|
121 |
-
return emb.unsqueeze(-1).unsqueeze(-1)
|
122 |
-
|
123 |
-
|
124 |
-
# --------------------------------------------------------------------------------------
|
125 |
-
class AffineConv2d(nn.Conv2d):
|
126 |
-
def __init__(
|
127 |
-
self,
|
128 |
-
in_channels,
|
129 |
-
out_channels,
|
130 |
-
kernel_size,
|
131 |
-
mode="affine",
|
132 |
-
bias=False,
|
133 |
-
stride=1,
|
134 |
-
padding=0,
|
135 |
-
dilation=1,
|
136 |
-
groups=1,
|
137 |
-
padding_mode="circular",
|
138 |
-
blind=True,
|
139 |
-
):
|
140 |
-
if mode == "affine": # f(a*x + 1) = a*f(x) + 1
|
141 |
-
bias = False
|
142 |
-
super().__init__(
|
143 |
-
in_channels,
|
144 |
-
out_channels,
|
145 |
-
kernel_size,
|
146 |
-
bias=bias,
|
147 |
-
stride=stride,
|
148 |
-
padding=padding,
|
149 |
-
dilation=dilation,
|
150 |
-
groups=groups,
|
151 |
-
padding_mode=padding_mode,
|
152 |
-
)
|
153 |
-
self.blind = blind
|
154 |
-
self.mode = mode
|
155 |
-
|
156 |
-
def affine(self, w):
|
157 |
-
"""returns new kernels that encode affine combinations"""
|
158 |
-
return (
|
159 |
-
w.view(self.out_channels, -1).roll(1, 1).view(w.size())
|
160 |
-
- w
|
161 |
-
+ 1 / w[0, ...].numel()
|
162 |
-
)
|
163 |
-
|
164 |
-
def forward(self, x):
|
165 |
-
if self.mode != "affine":
|
166 |
-
return super().forward(x)
|
167 |
-
else:
|
168 |
-
kernel = (
|
169 |
-
self.affine(self.weight)
|
170 |
-
if self.blind
|
171 |
-
else torch.cat(
|
172 |
-
(self.affine(self.weight[:, :-1, :, :]), self.weight[:, -1:, :, :]),
|
173 |
-
dim=1,
|
174 |
-
)
|
175 |
-
)
|
176 |
-
padding = tuple(
|
177 |
-
elt for elt in reversed(self.padding) for _ in range(2)
|
178 |
-
) # used to translate padding arg used by Conv module to the ones used by F.pad
|
179 |
-
padding_mode = (
|
180 |
-
self.padding_mode if self.padding_mode != "zeros" else "constant"
|
181 |
-
) # used to translate padding_mode arg used by Conv module to the ones used by F.pad
|
182 |
-
return F.conv2d(
|
183 |
-
F.pad(x, padding, mode=padding_mode),
|
184 |
-
kernel,
|
185 |
-
stride=self.stride,
|
186 |
-
dilation=self.dilation,
|
187 |
-
groups=self.groups,
|
188 |
-
)
|
189 |
-
|
190 |
-
|
191 |
-
# --------------------------------------------------------------------------------------
|
192 |
-
def kaiser_window(beta, length):
|
193 |
-
"""Return the Kaiser window of length `length` and shape parameter `beta`."""
|
194 |
-
if beta < 0:
|
195 |
-
raise ValueError("beta must be greater than 0")
|
196 |
-
if length < 1:
|
197 |
-
raise ValueError("length must be greater than 0")
|
198 |
-
if length == 1:
|
199 |
-
return torch.tensor([1.0])
|
200 |
-
half = (length - 1) / 2
|
201 |
-
n = torch.arange(length)
|
202 |
-
beta = torch.tensor(beta)
|
203 |
-
return torch.i0(beta * torch.sqrt(1 - ((n - half) / half) ** 2)) / torch.i0(beta)
|
204 |
-
|
205 |
-
|
206 |
-
def sinc_filter(factor=2, length=11, windowed=True):
|
207 |
-
r"""
|
208 |
-
Anti-aliasing sinc filter multiplied by a Kaiser window.
|
209 |
-
|
210 |
-
:param float factor: Downsampling factor.
|
211 |
-
:param int length: Length of the filter.
|
212 |
-
"""
|
213 |
-
deltaf = 1 / factor
|
214 |
-
|
215 |
-
n = torch.arange(length) - (length - 1) / 2
|
216 |
-
filter = torch.sinc(n / factor)
|
217 |
-
|
218 |
-
if windowed:
|
219 |
-
A = 2.285 * (length - 1) * 3.14 * deltaf + 7.95
|
220 |
-
if A <= 21:
|
221 |
-
beta = 0
|
222 |
-
elif A <= 50:
|
223 |
-
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21)
|
224 |
-
else:
|
225 |
-
beta = 0.1102 * (A - 8.7)
|
226 |
-
|
227 |
-
filter = filter * kaiser_window(beta, length)
|
228 |
-
|
229 |
-
filter = filter.unsqueeze(0)
|
230 |
-
filter = filter * filter.T
|
231 |
-
filter = filter.unsqueeze(0).unsqueeze(0)
|
232 |
-
filter = filter / filter.sum()
|
233 |
-
return filter
|
234 |
-
|
235 |
-
|
236 |
-
class EquivMaxPool(nn.Module):
|
237 |
-
r"""
|
238 |
-
Max pooling layer that is equivariant to translations.
|
239 |
-
|
240 |
-
:param int kernel_size: size of the pooling window.
|
241 |
-
:param int stride: stride of the pooling operation.
|
242 |
-
:param int padding: padding to apply before pooling.
|
243 |
-
:param bool circular_padding: circular padding for the convolutional layers.
|
244 |
-
"""
|
245 |
-
|
246 |
-
def __init__(
|
247 |
-
self,
|
248 |
-
antialias="gaussian",
|
249 |
-
factor=2,
|
250 |
-
device="cuda",
|
251 |
-
in_channels=64,
|
252 |
-
out_channels=64,
|
253 |
-
bias=False,
|
254 |
-
padding_mode="circular",
|
255 |
-
):
|
256 |
-
super(EquivMaxPool, self).__init__()
|
257 |
-
self.antialias = antialias
|
258 |
-
if antialias == "gaussian":
|
259 |
-
self.antialias_kernel = gaussian_blur(factor / 3.14).to(device)
|
260 |
-
elif antialias == "sinc":
|
261 |
-
self.antialias_kernel = sinc_filter(
|
262 |
-
factor=factor, length=11, windowed=True
|
263 |
-
).to(device)
|
264 |
-
|
265 |
-
self.conv_down = AffineConv2d(
|
266 |
-
in_channels,
|
267 |
-
out_channels,
|
268 |
-
kernel_size=3,
|
269 |
-
stride=1,
|
270 |
-
padding=1,
|
271 |
-
bias=bias,
|
272 |
-
padding_mode=padding_mode,
|
273 |
-
groups=1,
|
274 |
-
)
|
275 |
-
|
276 |
-
self.conv_up = AffineConv2d(
|
277 |
-
out_channels,
|
278 |
-
in_channels,
|
279 |
-
kernel_size=3,
|
280 |
-
stride=1,
|
281 |
-
padding=1,
|
282 |
-
bias=bias,
|
283 |
-
padding_mode=padding_mode,
|
284 |
-
groups=1,
|
285 |
-
)
|
286 |
-
|
287 |
-
def forward(self, x):
|
288 |
-
return self.downscale(x)
|
289 |
-
|
290 |
-
def downscale(self, x):
|
291 |
-
r"""
|
292 |
-
Apply the equivariant pooling.
|
293 |
-
|
294 |
-
:param torch.Tensor x: input tensor.
|
295 |
-
"""
|
296 |
-
B, C, H, W = x.shape
|
297 |
-
|
298 |
-
x = self.conv_down(x)
|
299 |
-
|
300 |
-
if self.antialias == "gaussian" or self.antialias == "sinc":
|
301 |
-
x = conv2d(x, self.antialias_kernel, padding="circular")
|
302 |
-
|
303 |
-
x1 = x[:, :, ::2, ::2].unsqueeze(0)
|
304 |
-
x2 = x[:, :, ::2, 1::2].unsqueeze(0)
|
305 |
-
x3 = x[:, :, 1::2, ::2].unsqueeze(0)
|
306 |
-
x4 = x[:, :, 1::2, 1::2].unsqueeze(0)
|
307 |
-
out = torch.cat([x1, x2, x3, x4], dim=0) # (4, B, C, H/2, W/2)
|
308 |
-
ind = torch.norm(out, dim=(2, 3, 4), p=2) # (4, B)
|
309 |
-
ind = torch.argmax(ind, dim=0) # (B)
|
310 |
-
out = out[ind, torch.arange(B), ...] # (B, C, H/2, W/2)
|
311 |
-
self.ind = ind
|
312 |
-
|
313 |
-
return out
|
314 |
-
|
315 |
-
def upscale(self, x):
|
316 |
-
B, C, H, W = x.shape
|
317 |
-
|
318 |
-
out = torch.zeros((B, C, H * 2, W * 2), device=x.device)
|
319 |
-
out[:, :, ::2, ::2] = x
|
320 |
-
ind = self.ind
|
321 |
-
filter = torch.zeros((B, 1, 2, 2), device=x.device)
|
322 |
-
filter[ind == 0, :, 0, 0] = 1
|
323 |
-
filter[ind == 1, :, 0, 1] = 1
|
324 |
-
filter[ind == 2, :, 1, 0] = 1
|
325 |
-
filter[ind == 3, :, 1, 1] = 1
|
326 |
-
out = conv2d(out, filter, padding="constant")
|
327 |
-
|
328 |
-
if self.antialias == "gaussian" or self.antialias == "sinc":
|
329 |
-
out = conv2d(out, self.antialias_kernel, padding="circular")
|
330 |
-
|
331 |
-
out = self.conv_up(out)
|
332 |
-
return out
|
333 |
-
|
334 |
-
|
335 |
-
# --------------------------------------------------------------------------------------
|
336 |
-
class ConvNextBaseBlock(nn.Module):
|
337 |
-
r"""
|
338 |
-
ConvNeXt Block mimicking DRUNet base layer (Conv + Relu + Conv)
|
339 |
-
|
340 |
-
Args:
|
341 |
-
in_channels (int): Number of input channels.
|
342 |
-
out_channels (int): Number of output channels.
|
343 |
-
mode (str): Mode for the AffineConv2d (if needed, else ignored).
|
344 |
-
bias (bool): Whether to use bias in convolutions. Default: False.
|
345 |
-
ksize (int): Kernel size for the convolutions. Default: 7.
|
346 |
-
padding_mode (str): Padding mode for convolutions. Default: 'circular'.
|
347 |
-
mult_fact (int): Multiplier factor for expanding the number of channels.
|
348 |
-
residual (bool): Whether to use a residual connection. Default: False.
|
349 |
-
"""
|
350 |
-
|
351 |
-
def __init__(
|
352 |
-
self,
|
353 |
-
in_channels,
|
354 |
-
out_channels,
|
355 |
-
mode="",
|
356 |
-
bias=False,
|
357 |
-
ksize=7,
|
358 |
-
padding_mode="circular",
|
359 |
-
mult_fact=1,
|
360 |
-
residual=False,
|
361 |
-
):
|
362 |
-
super().__init__()
|
363 |
-
|
364 |
-
### DEPTHWISE SEPARABLE CONVOLUTION: (N,C,H,W) -> (N,4*C,H,W)
|
365 |
-
# depthwise conv with big kernel
|
366 |
-
self.dwconv_a = AffineConv2d(
|
367 |
-
in_channels,
|
368 |
-
in_channels,
|
369 |
-
kernel_size=ksize,
|
370 |
-
padding=ksize // 2,
|
371 |
-
groups=in_channels,
|
372 |
-
padding_mode=padding_mode,
|
373 |
-
bias=bias,
|
374 |
-
mode=mode,
|
375 |
-
)
|
376 |
-
# depthwise conv with small kernel
|
377 |
-
self.dwconv_a_small = AffineConv2d(
|
378 |
-
in_channels,
|
379 |
-
in_channels,
|
380 |
-
kernel_size=3,
|
381 |
-
padding=3 // 2,
|
382 |
-
groups=in_channels,
|
383 |
-
padding_mode=padding_mode,
|
384 |
-
bias=bias,
|
385 |
-
mode=mode,
|
386 |
-
)
|
387 |
-
# pointwise conv to change number of channels
|
388 |
-
self.pwconv_a1 = AffineConv2d(
|
389 |
-
in_channels,
|
390 |
-
mult_fact * in_channels,
|
391 |
-
kernel_size=1,
|
392 |
-
stride=1,
|
393 |
-
padding=0,
|
394 |
-
mode=mode,
|
395 |
-
bias=bias,
|
396 |
-
padding_mode=padding_mode,
|
397 |
-
groups=1,
|
398 |
-
)
|
399 |
-
|
400 |
-
### ACTIVATION
|
401 |
-
self.act_a = nn.ReLU()
|
402 |
-
|
403 |
-
### POINTWISE CONVOLUTION: (N,4*C,H,W) -> (N,O,H,W)
|
404 |
-
self.pwconv_a2 = AffineConv2d(
|
405 |
-
mult_fact * in_channels,
|
406 |
-
out_channels,
|
407 |
-
kernel_size=1,
|
408 |
-
stride=1,
|
409 |
-
padding=0,
|
410 |
-
bias=bias,
|
411 |
-
padding_mode=padding_mode,
|
412 |
-
groups=1,
|
413 |
-
)
|
414 |
-
|
415 |
-
### Needed to match the number of channels : (N,C,H,W) -> (C,O,H,W)
|
416 |
-
self.residual = residual
|
417 |
-
if self.residual:
|
418 |
-
self.residual_conv = AffineConv2d(
|
419 |
-
in_channels,
|
420 |
-
out_channels,
|
421 |
-
kernel_size=1,
|
422 |
-
stride=1,
|
423 |
-
padding=0,
|
424 |
-
groups=1,
|
425 |
-
padding_mode=padding_mode,
|
426 |
-
bias=bias,
|
427 |
-
mode=mode,
|
428 |
-
)
|
429 |
-
|
430 |
-
def forward(self, x_in, stream1=None, stream2=None):
|
431 |
-
"""Forward with GPU parallelization using multiple cuda streams."""
|
432 |
-
|
433 |
-
if stream1 is not None and stream2 is not None:
|
434 |
-
# Use the streams
|
435 |
-
with torch.cuda.stream(stream1):
|
436 |
-
output_a = self.dwconv_a(x_in) # Run the first convolution in stream1
|
437 |
-
|
438 |
-
with torch.cuda.stream(stream2):
|
439 |
-
output_a_small = self.dwconv_a_small(
|
440 |
-
x_in
|
441 |
-
) # Run the second convolution in stream2
|
442 |
-
|
443 |
-
# Ensure the streams are synchronized before adding the results
|
444 |
-
torch.cuda.synchronize()
|
445 |
-
x = self.pwconv_a(output_a + output_a_small)
|
446 |
-
|
447 |
-
else:
|
448 |
-
x = self.dwconv_a(x_in) + self.dwconv_a_small(x_in) # replk 7x7 with 3x3
|
449 |
-
x = self.pwconv_a1(x)
|
450 |
-
|
451 |
-
x = self.act_a(x)
|
452 |
-
x = self.pwconv_a2(x) # (N,O,H,W)
|
453 |
-
|
454 |
-
if self.residual:
|
455 |
-
x = self.residual_conv(x_in) + x
|
456 |
-
|
457 |
-
return x
|
458 |
-
|
459 |
-
|
460 |
-
class ConvNextBlock2(nn.Module):
|
461 |
-
r"""
|
462 |
-
ConvNeXt Block mimicking DRUNet base layer (Conv + Relu + Conv)
|
463 |
-
|
464 |
-
Args:
|
465 |
-
???
|
466 |
-
"""
|
467 |
-
|
468 |
-
def __init__(
|
469 |
-
self,
|
470 |
-
in_channels,
|
471 |
-
out_channels,
|
472 |
-
mode="affine",
|
473 |
-
bias=False,
|
474 |
-
ksize=7,
|
475 |
-
padding_mode="circular",
|
476 |
-
mult_fact=4,
|
477 |
-
s1=None,
|
478 |
-
s2=None,
|
479 |
-
):
|
480 |
-
super().__init__()
|
481 |
-
self.block_0 = ConvNextBaseBlock(
|
482 |
-
in_channels,
|
483 |
-
out_channels,
|
484 |
-
mode=mode,
|
485 |
-
bias=bias,
|
486 |
-
ksize=ksize,
|
487 |
-
padding_mode=padding_mode,
|
488 |
-
mult_fact=mult_fact,
|
489 |
-
)
|
490 |
-
self.block_1 = ConvNextBaseBlock(
|
491 |
-
in_channels,
|
492 |
-
out_channels,
|
493 |
-
mode=mode,
|
494 |
-
bias=bias,
|
495 |
-
ksize=ksize,
|
496 |
-
padding_mode=padding_mode,
|
497 |
-
mult_fact=mult_fact,
|
498 |
-
)
|
499 |
-
# self.relu = nn.ReLU(inplace=True) # issue with the network when working in FP16 ???
|
500 |
-
self.relu = nn.ReLU()
|
501 |
-
|
502 |
-
# cuda stream to parallelize execution of ConvNextBaseBlock
|
503 |
-
self.s1 = s1
|
504 |
-
self.s2 = s2
|
505 |
-
|
506 |
-
def forward(self, input, emb_sigma=None):
|
507 |
-
if self.s1 is not None and self.s2 is not None:
|
508 |
-
x = self.block_0(input, self.s1, self.s2)
|
509 |
-
else:
|
510 |
-
x = self.block_0(input)
|
511 |
-
|
512 |
-
x = self.relu(x)
|
513 |
-
|
514 |
-
if self.s1 is not None and self.s2 is not None:
|
515 |
-
x = self.block_1(x, self.s1, self.s2)
|
516 |
-
else:
|
517 |
-
x = self.block_1(x)
|
518 |
-
return x + input
|
519 |
-
|
520 |
-
|
521 |
-
class CondResBlock(nn.Module):
|
522 |
-
def __init__(
|
523 |
-
self,
|
524 |
-
in_channels=64,
|
525 |
-
out_channels=64,
|
526 |
-
kernel_size=3,
|
527 |
-
stride=1,
|
528 |
-
padding=1,
|
529 |
-
bias=False,
|
530 |
-
emb_channels=512,
|
531 |
-
):
|
532 |
-
super(CondResBlock, self).__init__()
|
533 |
-
|
534 |
-
assert in_channels == out_channels, "Only support in_channels==out_channels."
|
535 |
-
|
536 |
-
self.gain = torch.nn.Parameter(torch.tensor([1.0]), requires_grad=True)
|
537 |
-
self.emb_linear = MPConv(emb_channels, out_channels, kernel=[3, 3])
|
538 |
-
self.conv1 = nn.Conv2d(
|
539 |
-
in_channels, out_channels, kernel_size, stride, padding, bias=bias
|
540 |
-
)
|
541 |
-
self.conv2 = nn.Conv2d(
|
542 |
-
out_channels, out_channels, kernel_size, stride, padding, bias=bias
|
543 |
-
)
|
544 |
-
|
545 |
-
def forward(self, x, emb_sigma):
|
546 |
-
# u = self.conv1(mp_silu(x))
|
547 |
-
u = self.conv1(F.relu((x)))
|
548 |
-
c = self.emb_linear(emb_sigma, gain=self.gain) + 1
|
549 |
-
# y = mp_silu(u * c.unsqueeze(2).unsqueeze(3).to(u.dtype))
|
550 |
-
y = F.relu(u * c.unsqueeze(2).unsqueeze(3).to(u.dtype))
|
551 |
-
y = self.conv2(y)
|
552 |
-
return x + y
|
553 |
-
|
554 |
-
|
555 |
-
"""
|
556 |
-
Functional blocks below
|
557 |
-
"""
|
558 |
-
from collections import OrderedDict
|
559 |
-
import torch
|
560 |
-
import torch.nn as nn
|
561 |
-
|
562 |
-
|
563 |
-
"""
|
564 |
-
# --------------------------------------------
|
565 |
-
# Advanced nn.Sequential
|
566 |
-
# https://github.com/xinntao/BasicSR
|
567 |
-
# --------------------------------------------
|
568 |
-
"""
|
569 |
-
|
570 |
-
|
571 |
-
def sequential(*args):
|
572 |
-
"""Advanced nn.Sequential.
|
573 |
-
Args:
|
574 |
-
nn.Sequential, nn.Module
|
575 |
-
Returns:
|
576 |
-
nn.Sequential
|
577 |
-
"""
|
578 |
-
if len(args) == 1:
|
579 |
-
if isinstance(args[0], OrderedDict):
|
580 |
-
raise NotImplementedError("sequential does not support OrderedDict input.")
|
581 |
-
return args[0] # No sequential is needed.
|
582 |
-
modules = []
|
583 |
-
for module in args:
|
584 |
-
if isinstance(module, nn.Sequential):
|
585 |
-
for submodule in module.children():
|
586 |
-
modules.append(submodule)
|
587 |
-
elif isinstance(module, nn.Module):
|
588 |
-
modules.append(module)
|
589 |
-
return nn.Sequential(*modules)
|
590 |
-
|
591 |
-
|
592 |
-
"""
|
593 |
-
# --------------------------------------------
|
594 |
-
# Useful blocks
|
595 |
-
# https://github.com/xinntao/BasicSR
|
596 |
-
# --------------------------------
|
597 |
-
# conv + normaliation + relu (conv)
|
598 |
-
# (PixelUnShuffle)
|
599 |
-
# (ConditionalBatchNorm2d)
|
600 |
-
# concat (ConcatBlock)
|
601 |
-
# sum (ShortcutBlock)
|
602 |
-
# resblock (ResBlock)
|
603 |
-
# Channel Attention (CA) Layer (CALayer)
|
604 |
-
# Residual Channel Attention Block (RCABlock)
|
605 |
-
# Residual Channel Attention Group (RCAGroup)
|
606 |
-
# Residual Dense Block (ResidualDenseBlock_5C)
|
607 |
-
# Residual in Residual Dense Block (RRDB)
|
608 |
-
# --------------------------------------------
|
609 |
-
"""
|
610 |
-
|
611 |
-
|
612 |
-
# --------------------------------------------
|
613 |
-
# return nn.Sequantial of (Conv + BN + ReLU)
|
614 |
-
# --------------------------------------------
|
615 |
-
def conv(
|
616 |
-
in_channels=64,
|
617 |
-
out_channels=64,
|
618 |
-
kernel_size=3,
|
619 |
-
stride=1,
|
620 |
-
padding=1,
|
621 |
-
bias=True,
|
622 |
-
mode="CBR",
|
623 |
-
negative_slope=0.2,
|
624 |
-
):
|
625 |
-
L = []
|
626 |
-
for t in mode:
|
627 |
-
if t == "C":
|
628 |
-
L.append(
|
629 |
-
nn.Conv2d(
|
630 |
-
in_channels=in_channels,
|
631 |
-
out_channels=out_channels,
|
632 |
-
kernel_size=kernel_size,
|
633 |
-
stride=stride,
|
634 |
-
padding=padding,
|
635 |
-
bias=bias,
|
636 |
-
)
|
637 |
-
)
|
638 |
-
elif t == "T":
|
639 |
-
L.append(
|
640 |
-
nn.ConvTranspose2d(
|
641 |
-
in_channels=in_channels,
|
642 |
-
out_channels=out_channels,
|
643 |
-
kernel_size=kernel_size,
|
644 |
-
stride=stride,
|
645 |
-
padding=padding,
|
646 |
-
bias=bias,
|
647 |
-
)
|
648 |
-
)
|
649 |
-
elif t == "B":
|
650 |
-
L.append(nn.BatchNorm2d(out_channels, momentum=0.9, eps=1e-04, affine=True))
|
651 |
-
elif t == "I":
|
652 |
-
L.append(nn.InstanceNorm2d(out_channels, affine=True))
|
653 |
-
elif t == "R":
|
654 |
-
L.append(nn.ReLU(inplace=True))
|
655 |
-
elif t == "r":
|
656 |
-
L.append(nn.ReLU(inplace=False))
|
657 |
-
elif t == "L":
|
658 |
-
L.append(nn.LeakyReLU(negative_slope=negative_slope, inplace=True))
|
659 |
-
elif t == "l":
|
660 |
-
L.append(nn.LeakyReLU(negative_slope=negative_slope, inplace=False))
|
661 |
-
elif t == "E":
|
662 |
-
L.append(nn.ELU(inplace=False))
|
663 |
-
elif t == "s":
|
664 |
-
L.append(nn.Softplus())
|
665 |
-
elif t == "2":
|
666 |
-
L.append(nn.PixelShuffle(upscale_factor=2))
|
667 |
-
elif t == "3":
|
668 |
-
L.append(nn.PixelShuffle(upscale_factor=3))
|
669 |
-
elif t == "4":
|
670 |
-
L.append(nn.PixelShuffle(upscale_factor=4))
|
671 |
-
elif t == "U":
|
672 |
-
L.append(nn.Upsample(scale_factor=2, mode="nearest"))
|
673 |
-
elif t == "u":
|
674 |
-
L.append(nn.Upsample(scale_factor=3, mode="nearest"))
|
675 |
-
elif t == "v":
|
676 |
-
L.append(nn.Upsample(scale_factor=4, mode="nearest"))
|
677 |
-
elif t == "M":
|
678 |
-
L.append(nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=0))
|
679 |
-
elif t == "A":
|
680 |
-
L.append(nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=0))
|
681 |
-
else:
|
682 |
-
raise NotImplementedError("Undefined type: ".format(t))
|
683 |
-
return sequential(*L)
|
684 |
-
|
685 |
-
|
686 |
-
"""
|
687 |
-
# --------------------------------------------
|
688 |
-
# Upsampler
|
689 |
-
# Kai Zhang, https://github.com/cszn/KAIR
|
690 |
-
# --------------------------------------------
|
691 |
-
# upsample_pixelshuffle
|
692 |
-
# upsample_upconv
|
693 |
-
# upsample_convtranspose
|
694 |
-
# --------------------------------------------
|
695 |
-
"""
|
696 |
-
|
697 |
-
|
698 |
-
# --------------------------------------------
|
699 |
-
# conv + subp (+ relu)
|
700 |
-
# --------------------------------------------
|
701 |
-
def upsample_pixelshuffle(
|
702 |
-
in_channels=64,
|
703 |
-
out_channels=3,
|
704 |
-
kernel_size=3,
|
705 |
-
stride=1,
|
706 |
-
padding=1,
|
707 |
-
bias=True,
|
708 |
-
mode="2R",
|
709 |
-
negative_slope=0.2,
|
710 |
-
):
|
711 |
-
assert len(mode) < 4 and mode[0] in [
|
712 |
-
"2",
|
713 |
-
"3",
|
714 |
-
"4",
|
715 |
-
], "mode examples: 2, 2R, 2BR, 3, ..., 4BR."
|
716 |
-
up1 = conv(
|
717 |
-
in_channels,
|
718 |
-
out_channels * (int(mode[0]) ** 2),
|
719 |
-
kernel_size,
|
720 |
-
stride,
|
721 |
-
padding,
|
722 |
-
bias,
|
723 |
-
mode="C" + mode,
|
724 |
-
negative_slope=negative_slope,
|
725 |
-
)
|
726 |
-
return up1
|
727 |
-
|
728 |
-
|
729 |
-
# --------------------------------------------
|
730 |
-
# nearest_upsample + conv (+ R)
|
731 |
-
# --------------------------------------------
|
732 |
-
def upsample_upconv(
|
733 |
-
in_channels=64,
|
734 |
-
out_channels=3,
|
735 |
-
kernel_size=3,
|
736 |
-
stride=1,
|
737 |
-
padding=1,
|
738 |
-
bias=True,
|
739 |
-
mode="2R",
|
740 |
-
negative_slope=0.2,
|
741 |
-
):
|
742 |
-
assert len(mode) < 4 and mode[0] in [
|
743 |
-
"2",
|
744 |
-
"3",
|
745 |
-
"4",
|
746 |
-
], "mode examples: 2, 2R, 2BR, 3, ..., 4BR"
|
747 |
-
if mode[0] == "2":
|
748 |
-
uc = "UC"
|
749 |
-
elif mode[0] == "3":
|
750 |
-
uc = "uC"
|
751 |
-
elif mode[0] == "4":
|
752 |
-
uc = "vC"
|
753 |
-
mode = mode.replace(mode[0], uc)
|
754 |
-
up1 = conv(
|
755 |
-
in_channels,
|
756 |
-
out_channels,
|
757 |
-
kernel_size,
|
758 |
-
stride,
|
759 |
-
padding,
|
760 |
-
bias,
|
761 |
-
mode=mode,
|
762 |
-
negative_slope=negative_slope,
|
763 |
-
)
|
764 |
-
return up1
|
765 |
-
|
766 |
-
|
767 |
-
# --------------------------------------------
|
768 |
-
# convTranspose (+ relu)
|
769 |
-
# --------------------------------------------
|
770 |
-
def upsample_convtranspose(
|
771 |
-
in_channels=64,
|
772 |
-
out_channels=3,
|
773 |
-
kernel_size=2,
|
774 |
-
stride=2,
|
775 |
-
padding=0,
|
776 |
-
bias=True,
|
777 |
-
mode="2R",
|
778 |
-
negative_slope=0.2,
|
779 |
-
):
|
780 |
-
assert len(mode) < 4 and mode[0] in [
|
781 |
-
"2",
|
782 |
-
"3",
|
783 |
-
"4",
|
784 |
-
"8",
|
785 |
-
], "mode examples: 2, 2R, 2BR, 3, ..., 4BR."
|
786 |
-
kernel_size = int(mode[0])
|
787 |
-
stride = int(mode[0])
|
788 |
-
mode = mode.replace(mode[0], "T")
|
789 |
-
up1 = conv(
|
790 |
-
in_channels,
|
791 |
-
out_channels,
|
792 |
-
kernel_size,
|
793 |
-
stride,
|
794 |
-
padding,
|
795 |
-
bias,
|
796 |
-
mode,
|
797 |
-
negative_slope,
|
798 |
-
)
|
799 |
-
return up1
|
800 |
-
|
801 |
-
|
802 |
-
"""
|
803 |
-
# --------------------------------------------
|
804 |
-
# Downsampler
|
805 |
-
# Kai Zhang, https://github.com/cszn/KAIR
|
806 |
-
# --------------------------------------------
|
807 |
-
# downsample_strideconv
|
808 |
-
# downsample_maxpool
|
809 |
-
# downsample_avgpool
|
810 |
-
# --------------------------------------------
|
811 |
-
"""
|
812 |
-
|
813 |
-
|
814 |
-
# --------------------------------------------
|
815 |
-
# strideconv (+ relu)
|
816 |
-
# --------------------------------------------
|
817 |
-
def downsample_strideconv(
|
818 |
-
in_channels=64,
|
819 |
-
out_channels=64,
|
820 |
-
kernel_size=2,
|
821 |
-
stride=2,
|
822 |
-
padding=0,
|
823 |
-
bias=True,
|
824 |
-
mode="2R",
|
825 |
-
negative_slope=0.2,
|
826 |
-
):
|
827 |
-
assert len(mode) < 4 and mode[0] in [
|
828 |
-
"2",
|
829 |
-
"3",
|
830 |
-
"4",
|
831 |
-
"8",
|
832 |
-
], "mode examples: 2, 2R, 2BR, 3, ..., 4BR."
|
833 |
-
kernel_size = int(mode[0])
|
834 |
-
stride = int(mode[0])
|
835 |
-
mode = mode.replace(mode[0], "C")
|
836 |
-
down1 = conv(
|
837 |
-
in_channels,
|
838 |
-
out_channels,
|
839 |
-
kernel_size,
|
840 |
-
stride,
|
841 |
-
padding,
|
842 |
-
bias,
|
843 |
-
mode,
|
844 |
-
negative_slope,
|
845 |
-
)
|
846 |
-
return down1
|
847 |
-
|
848 |
-
|
849 |
-
# --------------------------------------------
|
850 |
-
# maxpooling + conv (+ relu)
|
851 |
-
# --------------------------------------------
|
852 |
-
def downsample_maxpool(
|
853 |
-
in_channels=64,
|
854 |
-
out_channels=64,
|
855 |
-
kernel_size=3,
|
856 |
-
stride=1,
|
857 |
-
padding=0,
|
858 |
-
bias=True,
|
859 |
-
mode="2R",
|
860 |
-
negative_slope=0.2,
|
861 |
-
):
|
862 |
-
assert len(mode) < 4 and mode[0] in [
|
863 |
-
"2",
|
864 |
-
"3",
|
865 |
-
], "mode examples: 2, 2R, 2BR, 3, ..., 3BR."
|
866 |
-
kernel_size_pool = int(mode[0])
|
867 |
-
stride_pool = int(mode[0])
|
868 |
-
mode = mode.replace(mode[0], "MC")
|
869 |
-
pool = conv(
|
870 |
-
kernel_size=kernel_size_pool,
|
871 |
-
stride=stride_pool,
|
872 |
-
mode=mode[0],
|
873 |
-
negative_slope=negative_slope,
|
874 |
-
)
|
875 |
-
pool_tail = conv(
|
876 |
-
in_channels,
|
877 |
-
out_channels,
|
878 |
-
kernel_size,
|
879 |
-
stride,
|
880 |
-
padding,
|
881 |
-
bias,
|
882 |
-
mode=mode[1:],
|
883 |
-
negative_slope=negative_slope,
|
884 |
-
)
|
885 |
-
return sequential(pool, pool_tail)
|
886 |
-
|
887 |
-
|
888 |
-
# --------------------------------------------
|
889 |
-
# averagepooling + conv (+ relu)
|
890 |
-
# --------------------------------------------
|
891 |
-
def downsample_avgpool(
|
892 |
-
in_channels=64,
|
893 |
-
out_channels=64,
|
894 |
-
kernel_size=3,
|
895 |
-
stride=1,
|
896 |
-
padding=1,
|
897 |
-
bias=True,
|
898 |
-
mode="2R",
|
899 |
-
negative_slope=0.2,
|
900 |
-
):
|
901 |
-
assert len(mode) < 4 and mode[0] in [
|
902 |
-
"2",
|
903 |
-
"3",
|
904 |
-
], "mode examples: 2, 2R, 2BR, 3, ..., 3BR."
|
905 |
-
kernel_size_pool = int(mode[0])
|
906 |
-
stride_pool = int(mode[0])
|
907 |
-
mode = mode.replace(mode[0], "AC")
|
908 |
-
pool = conv(
|
909 |
-
kernel_size=kernel_size_pool,
|
910 |
-
stride=stride_pool,
|
911 |
-
mode=mode[0],
|
912 |
-
negative_slope=negative_slope,
|
913 |
-
)
|
914 |
-
pool_tail = conv(
|
915 |
-
in_channels,
|
916 |
-
out_channels,
|
917 |
-
kernel_size,
|
918 |
-
stride,
|
919 |
-
padding,
|
920 |
-
bias,
|
921 |
-
mode=mode[1:],
|
922 |
-
negative_slope=negative_slope,
|
923 |
-
)
|
924 |
-
return sequential(pool, pool_tail)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/heads.py
DELETED
@@ -1,270 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from models.blocks import AffineConv2d, downsample_strideconv, upsample_convtranspose
|
3 |
-
|
4 |
-
class InHead(torch.nn.Module):
|
5 |
-
def __init__(self, in_channels_list, out_channels, mode="", bias=False, input_layer=False):
|
6 |
-
super(InHead, self).__init__()
|
7 |
-
self.in_channels_list = in_channels_list
|
8 |
-
self.input_layer = input_layer
|
9 |
-
for i, in_channels in enumerate(in_channels_list):
|
10 |
-
conv = AffineConv2d(
|
11 |
-
in_channels=in_channels,
|
12 |
-
out_channels=out_channels,
|
13 |
-
bias=bias,
|
14 |
-
mode=mode,
|
15 |
-
kernel_size=3,
|
16 |
-
stride=1,
|
17 |
-
padding=1,
|
18 |
-
padding_mode="zeros",
|
19 |
-
)
|
20 |
-
setattr(self, f"conv{i}", conv)
|
21 |
-
|
22 |
-
def forward(self, x):
|
23 |
-
in_channels = x.size(1) - 1 if self.input_layer else x.size(1)
|
24 |
-
|
25 |
-
# find index
|
26 |
-
i = self.in_channels_list.index(in_channels)
|
27 |
-
x = getattr(self, f"conv{i}")(x)
|
28 |
-
|
29 |
-
return x
|
30 |
-
|
31 |
-
class OutTail(torch.nn.Module):
|
32 |
-
def __init__(self, in_channels, out_channels_list, mode="", bias=False):
|
33 |
-
super(OutTail, self).__init__()
|
34 |
-
self.in_channels = in_channels
|
35 |
-
self.out_channels_list = out_channels_list
|
36 |
-
for i, out_channels in enumerate(out_channels_list):
|
37 |
-
conv = AffineConv2d(
|
38 |
-
in_channels=in_channels,
|
39 |
-
out_channels=out_channels,
|
40 |
-
bias=bias,
|
41 |
-
mode=mode,
|
42 |
-
kernel_size=3,
|
43 |
-
stride=1,
|
44 |
-
padding=1,
|
45 |
-
padding_mode="zeros",
|
46 |
-
)
|
47 |
-
setattr(self, f"conv{i}", conv)
|
48 |
-
|
49 |
-
def forward(self, x, out_channels):
|
50 |
-
i = self.out_channels_list.index(out_channels)
|
51 |
-
x = getattr(self, f"conv{i}")(x)
|
52 |
-
|
53 |
-
return x
|
54 |
-
|
55 |
-
# TODO: check that the heads are compatible with the old implementation
|
56 |
-
class Heads(torch.nn.Module):
|
57 |
-
def __init__(self, in_channels_list, out_channels, depth=2, scale=1, bias=True, mode="bilinear", c_mult=1, c_add=0, relu_in=False, skip_in=False):
|
58 |
-
super(Heads, self).__init__()
|
59 |
-
self.in_channels_list = [c * (c_mult + c_add) for c in in_channels_list]
|
60 |
-
self.scale = scale
|
61 |
-
self.mode = mode
|
62 |
-
for i, in_channels in enumerate(self.in_channels_list):
|
63 |
-
setattr(self, f"head{i}", HeadBlock(in_channels, out_channels, depth=depth, bias=bias, relu_in=relu_in, skip_in=skip_in))
|
64 |
-
|
65 |
-
if self.mode == "":
|
66 |
-
self.nl = torch.nn.ReLU(inplace=False)
|
67 |
-
if self.scale != 1:
|
68 |
-
for i, in_channels in enumerate(in_channels_list):
|
69 |
-
setattr(self, f"down{i}", downsample_strideconv(in_channels, in_channels, bias=False, mode=str(self.scale)))
|
70 |
-
|
71 |
-
def forward(self, x):
|
72 |
-
in_channels = x.size(1)
|
73 |
-
i = self.in_channels_list.index(in_channels)
|
74 |
-
|
75 |
-
if self.scale != 1:
|
76 |
-
if self.mode == "bilinear":
|
77 |
-
x = torch.nn.functional.interpolate(x, scale_factor=1/self.scale, mode='bilinear', align_corners=False)
|
78 |
-
else:
|
79 |
-
x = getattr(self, f"down{i}")(x)
|
80 |
-
x = self.nl(x)
|
81 |
-
|
82 |
-
# find index
|
83 |
-
x = getattr(self, f"head{i}")(x)
|
84 |
-
|
85 |
-
return x
|
86 |
-
|
87 |
-
class Tails(torch.nn.Module):
|
88 |
-
def __init__(self, in_channels, out_channels_list, depth=2, scale=1, bias=True, mode="bilinear", c_mult=1, relu_in=False, skip_in=False):
|
89 |
-
super(Tails, self).__init__()
|
90 |
-
self.out_channels_list = out_channels_list
|
91 |
-
self.scale = scale
|
92 |
-
for i, out_channels in enumerate(out_channels_list):
|
93 |
-
setattr(self, f"tail{i}", HeadBlock(in_channels, out_channels * c_mult, depth=depth, bias=bias, relu_in=relu_in, skip_in=skip_in))
|
94 |
-
|
95 |
-
self.mode = mode
|
96 |
-
if self.mode == "":
|
97 |
-
self.nl = torch.nn.ReLU(inplace=False)
|
98 |
-
if self.scale != 1:
|
99 |
-
# self.up = upsample_convtranspose(out_channels, out_channels, bias=True, mode=str(self.scale))
|
100 |
-
for i, out_channels in enumerate(out_channels_list):
|
101 |
-
setattr(self, f"up{i}", upsample_convtranspose(out_channels * c_mult, out_channels * c_mult, bias=bias, mode=str(self.scale)))
|
102 |
-
|
103 |
-
def forward(self, x, out_channels):
|
104 |
-
i = self.out_channels_list.index(out_channels)
|
105 |
-
x = getattr(self, f"tail{i}")(x)
|
106 |
-
# find index
|
107 |
-
if self.scale != 1:
|
108 |
-
if self.mode == "bilinear":
|
109 |
-
x = torch.nn.functional.interpolate(x, scale_factor=self.scale, mode='bilinear', align_corners=False)
|
110 |
-
else:
|
111 |
-
x = getattr(self, f"up{i}")(x)
|
112 |
-
|
113 |
-
return x
|
114 |
-
|
115 |
-
class ConvChannels(torch.nn.Module):
|
116 |
-
"""
|
117 |
-
TODO: remplace this with convconv
|
118 |
-
A method that only performs convolutional operations on the appropriate channels dim.
|
119 |
-
"""
|
120 |
-
def __init__(self, channels_list, depth=2, bias=False, residual=False):
|
121 |
-
super(ConvChannels, self).__init__()
|
122 |
-
self.channels_list = channels_list
|
123 |
-
self.residual = residual
|
124 |
-
for i, channels in enumerate(channels_list):
|
125 |
-
setattr(self, f"conv{i}_1", torch.nn.Conv2d(channels, channels, 3, bias=bias, padding=1))
|
126 |
-
setattr(self, f"nl{i}", torch.nn.ReLU())
|
127 |
-
setattr(self, f"conv{i}_2", torch.nn.Conv2d(channels, channels, 3, bias=bias, padding=1))
|
128 |
-
|
129 |
-
def forward(self, x):
|
130 |
-
i = self.channels_list.index(x.shape[1])
|
131 |
-
u = getattr(self, f"conv{i}_1")(x)
|
132 |
-
u = getattr(self, f"nl{i}")(u)
|
133 |
-
u = getattr(self, f"conv{i}_2")(u)
|
134 |
-
if self.residual:
|
135 |
-
u = x + u
|
136 |
-
return u
|
137 |
-
|
138 |
-
class HeadBlock(torch.nn.Module):
|
139 |
-
def __init__(self, in_channels, out_channels, kernel_size=3, bias=True, depth=2, relu_in=False, skip_in=False):
|
140 |
-
super(HeadBlock, self).__init__()
|
141 |
-
|
142 |
-
padding = kernel_size // 2
|
143 |
-
|
144 |
-
c = out_channels if depth < 2 else in_channels
|
145 |
-
|
146 |
-
self.convin = torch.nn.Conv2d(in_channels, c, kernel_size, padding=padding, bias=bias)
|
147 |
-
self.zero_conv_skip = torch.nn.Conv2d(in_channels, c, 1, bias=False)
|
148 |
-
self.depth = depth
|
149 |
-
self.nl_1 = torch.nn.ReLU(inplace=False)
|
150 |
-
self.nl_2 = torch.nn.ReLU(inplace=False)
|
151 |
-
self.relu_in = relu_in
|
152 |
-
self.skip_in = skip_in
|
153 |
-
|
154 |
-
for i in range(depth-1):
|
155 |
-
if i < depth - 2:
|
156 |
-
c_in, c = in_channels, in_channels
|
157 |
-
else:
|
158 |
-
c_in, c = in_channels, out_channels
|
159 |
-
|
160 |
-
setattr(self, f"conv1{i}", torch.nn.Conv2d(c_in, c_in, kernel_size, padding=padding, bias=bias))
|
161 |
-
setattr(self, f"conv2{i}", torch.nn.Conv2d(c_in, c, kernel_size, padding=padding, bias=bias))
|
162 |
-
setattr(self, f"skipconv{i}", torch.nn.Conv2d(c_in, c, 1, bias=False))
|
163 |
-
|
164 |
-
|
165 |
-
def forward(self, x):
|
166 |
-
|
167 |
-
if self.skip_in and self.relu_in:
|
168 |
-
x = self.nl_1(self.convin(x)) + self.zero_conv_skip(x)
|
169 |
-
elif self.skip_in and not self.relu_in:
|
170 |
-
x = self.convin(x) + self.zero_conv_skip(x)
|
171 |
-
else:
|
172 |
-
x = self.convin(x)
|
173 |
-
|
174 |
-
for i in range(self.depth-1):
|
175 |
-
aux = getattr(self, f"conv1{i}")(x)
|
176 |
-
aux = self.nl_2(aux)
|
177 |
-
aux_0 = getattr(self, f"conv2{i}")(aux)
|
178 |
-
aux_1 = getattr(self, f"skipconv{i}")(x)
|
179 |
-
x = aux_0 + aux_1
|
180 |
-
|
181 |
-
return x
|
182 |
-
|
183 |
-
|
184 |
-
class SNRModule(torch.nn.Module):
|
185 |
-
"""
|
186 |
-
A method that only performs convolutional operations on the appropriate channels dim.
|
187 |
-
"""
|
188 |
-
def __init__(self, channels_list, out_channels, bias=False, residual=False, features=64):
|
189 |
-
super(SNRModule, self).__init__()
|
190 |
-
self.channels_list = channels_list
|
191 |
-
self.residual = residual
|
192 |
-
for i, channels in enumerate(channels_list):
|
193 |
-
setattr(self, f"conv{i}_1", torch.nn.Conv2d(channels + 1, features, 3, bias=bias, padding=1))
|
194 |
-
setattr(self, f"nl{i}", torch.nn.ReLU())
|
195 |
-
setattr(self, f"conv{i}_2", torch.nn.Conv2d(features, out_channels, 3, bias=bias, padding=1))
|
196 |
-
|
197 |
-
def forward(self, x0, sigma):
|
198 |
-
i = self.channels_list.index(x0.shape[1])
|
199 |
-
|
200 |
-
noise_level_map = (torch.ones((x0.size(0), 1, x0.size(2), x0.size(3)), device=x0.device) * sigma)
|
201 |
-
x = torch.cat((x0, noise_level_map), 1)
|
202 |
-
|
203 |
-
u = getattr(self, f"conv{i}_1")(x)
|
204 |
-
u = getattr(self, f"nl{i}")(u)
|
205 |
-
u = getattr(self, f"conv{i}_2")(u)
|
206 |
-
|
207 |
-
den = u.pow(2).mean(dim=-1, keepdim=True).mean(dim=-2, keepdim=True).sqrt()
|
208 |
-
u = u.abs() / (den + 1e-8)
|
209 |
-
|
210 |
-
return u.mean(dim=-1, keepdim=True).mean(dim=-2, keepdim=True)
|
211 |
-
|
212 |
-
|
213 |
-
class EquivConvModule(torch.nn.Module):
|
214 |
-
"""
|
215 |
-
A method that only performs convolutional operations on the appropriate channels dim.
|
216 |
-
"""
|
217 |
-
def __init__(self, channels_list, out_channels, bias=False, residual=False, features=64, N=1):
|
218 |
-
super(EquivConvModule, self).__init__()
|
219 |
-
self.channels_list = [c * N for c in channels_list]
|
220 |
-
self.residual = residual
|
221 |
-
for i, channels in enumerate(channels_list):
|
222 |
-
setattr(self, f"conv{i}_1", torch.nn.Conv2d(channels * N, channels * N, 3, bias=bias, padding=1))
|
223 |
-
setattr(self, f"nl{i}", torch.nn.ReLU())
|
224 |
-
setattr(self, f"conv{i}_2", torch.nn.Conv2d(channels * N, out_channels, 3, bias=bias, padding=1))
|
225 |
-
|
226 |
-
def forward(self, x):
|
227 |
-
|
228 |
-
i = self.channels_list.index(x.shape[1])
|
229 |
-
|
230 |
-
u = getattr(self, f"conv{i}_1")(x)
|
231 |
-
u = getattr(self, f"nl{i}")(u)
|
232 |
-
u = getattr(self, f"conv{i}_2")(u)
|
233 |
-
|
234 |
-
return u
|
235 |
-
|
236 |
-
|
237 |
-
class EquivHeads(torch.nn.Module):
|
238 |
-
def __init__(self, in_channels_list, out_channels, depth=2, scale=1, bias=True, mode="bilinear"):
|
239 |
-
super(EquivHeads, self).__init__()
|
240 |
-
self.in_channels_list = in_channels_list
|
241 |
-
self.scale = scale
|
242 |
-
self.mode = mode
|
243 |
-
for i, in_channels in enumerate(in_channels_list):
|
244 |
-
setattr(self, f"head{i}", HeadBlock(in_channels + 1, out_channels, depth=depth, bias=bias))
|
245 |
-
|
246 |
-
if self.mode == "":
|
247 |
-
self.nl = torch.nn.ReLU(inplace=False)
|
248 |
-
if self.scale != 1:
|
249 |
-
for i, in_channels in enumerate(in_channels_list):
|
250 |
-
setattr(self, f"down{i}", downsample_strideconv(in_channels, in_channels, bias=False, mode=str(self.scale)))
|
251 |
-
|
252 |
-
def forward(self, x, sigma):
|
253 |
-
in_channels = x.size(1)
|
254 |
-
i = self.in_channels_list.index(in_channels)
|
255 |
-
|
256 |
-
if self.scale != 1:
|
257 |
-
if self.mode == "bilinear":
|
258 |
-
x = torch.nn.functional.interpolate(x, scale_factor=1/self.scale, mode='bilinear', align_corners=False)
|
259 |
-
else:
|
260 |
-
x = getattr(self, f"down{i}")(x)
|
261 |
-
x = self.nl(x)
|
262 |
-
|
263 |
-
# concat noise level map
|
264 |
-
noise_level_map = (torch.ones((x.size(0), 1, x.size(2), x.size(3)), device=x.device) * sigma)
|
265 |
-
x = torch.cat((x, noise_level_map), 1)
|
266 |
-
|
267 |
-
# find index
|
268 |
-
x = getattr(self, f"head{i}")(x)
|
269 |
-
|
270 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/ram.py
ADDED
@@ -0,0 +1,854 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import deepinv as dinv
|
6 |
+
from deepinv.physics import Physics, LinearPhysics, Downsampling
|
7 |
+
from deepinv.utils import TensorList
|
8 |
+
from deepinv.utils.tensorlist import TensorList
|
9 |
+
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
|
12 |
+
cuda = True if torch.cuda.is_available() else False
|
13 |
+
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
|
14 |
+
|
15 |
+
class RAM(nn.Module):
|
16 |
+
r"""
|
17 |
+
RAM model
|
18 |
+
|
19 |
+
This model is a convolutional neural network (CNN) designed for image reconstruction tasks.
|
20 |
+
|
21 |
+
:param in_channels: Number of input channels. If a list is provided, the model will have separate heads for each channel.
|
22 |
+
:param device: Device to which the model should be moved. If None, the model will be created on the default device.
|
23 |
+
:param pretrained: If True, the model will be initialized with pretrained weights.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
in_channels=[1, 2, 3],
|
29 |
+
device=None,
|
30 |
+
pretrained=True,
|
31 |
+
):
|
32 |
+
super(RAM, self).__init__()
|
33 |
+
|
34 |
+
nc = [64, 128, 256, 512] # number of channels in the network
|
35 |
+
self.in_channels = in_channels
|
36 |
+
self.fact_realign = torch.nn.Parameter(torch.tensor([1.0], device=device))
|
37 |
+
|
38 |
+
self.separate_head = isinstance(in_channels, list)
|
39 |
+
|
40 |
+
if isinstance(in_channels, list):
|
41 |
+
in_channels_first = []
|
42 |
+
for i in range(len(in_channels)):
|
43 |
+
in_channels_first.append(in_channels[i] + 2)
|
44 |
+
|
45 |
+
# check if in_channels is a list
|
46 |
+
self.m_head = InHead(in_channels_first, nc[0])
|
47 |
+
|
48 |
+
self.m_down1 = BaseEncBlock(nc[0], nc[0], img_channels=in_channels, decode_upscale=1)
|
49 |
+
self.m_down2 = BaseEncBlock(nc[1], nc[1], img_channels=in_channels, decode_upscale=2)
|
50 |
+
self.m_down3 = BaseEncBlock(nc[2], nc[2], img_channels=in_channels, decode_upscale=4)
|
51 |
+
self.m_body = BaseEncBlock(nc[3], nc[3], img_channels=in_channels, decode_upscale=8)
|
52 |
+
self.m_up3 = BaseEncBlock(nc[2], nc[2], img_channels=in_channels, decode_upscale=4)
|
53 |
+
self.m_up2 = BaseEncBlock(nc[1], nc[1], img_channels=in_channels, decode_upscale=2)
|
54 |
+
self.m_up1 = BaseEncBlock(nc[0], nc[0], img_channels=in_channels, decode_upscale=1)
|
55 |
+
|
56 |
+
self.pool1 = downsample_strideconv(nc[0], nc[1], bias=False, mode="2")
|
57 |
+
self.pool2 = downsample_strideconv(nc[1], nc[2], bias=False, mode="2")
|
58 |
+
self.pool3 = downsample_strideconv(nc[2], nc[3], bias=False, mode="2")
|
59 |
+
self.up3 = upsample_convtranspose(nc[3], nc[2], bias=False, mode="2")
|
60 |
+
self.up2 = upsample_convtranspose(nc[2], nc[1], bias=False, mode="2")
|
61 |
+
self.up1 = upsample_convtranspose(nc[1], nc[0], bias=False, mode="2")
|
62 |
+
|
63 |
+
self.m_tail = OutTail(nc[0], in_channels)
|
64 |
+
|
65 |
+
# load pretrained weights from hugging face
|
66 |
+
if pretrained:
|
67 |
+
self.load_state_dict(
|
68 |
+
torch.load(hf_hub_download(repo_id="mterris/ram", filename="ram.pth.tar"), map_location=device))
|
69 |
+
|
70 |
+
if device is not None:
|
71 |
+
self.to(device)
|
72 |
+
|
73 |
+
def constant2map(self, value, x):
|
74 |
+
r"""
|
75 |
+
Converts a constant value to a map of the same size as the input tensor x.
|
76 |
+
|
77 |
+
:params float value: constant value
|
78 |
+
:params torch.Tensor x: input tensor
|
79 |
+
"""
|
80 |
+
if isinstance(value, torch.Tensor):
|
81 |
+
if value.ndim > 0:
|
82 |
+
value_map = value.view(x.size(0), 1, 1, 1)
|
83 |
+
value_map = value_map.expand(-1, 1, x.size(2), x.size(3))
|
84 |
+
else:
|
85 |
+
value_map = torch.ones(
|
86 |
+
(x.size(0), 1, x.size(2), x.size(3)), device=x.device
|
87 |
+
) * value[None, None, None, None].to(x.device)
|
88 |
+
else:
|
89 |
+
value_map = (
|
90 |
+
torch.ones((x.size(0), 1, x.size(2), x.size(3)), device=x.device)
|
91 |
+
* value
|
92 |
+
)
|
93 |
+
return value_map
|
94 |
+
|
95 |
+
def base_conditioning(self, x, sigma, gamma):
|
96 |
+
noise_level_map = self.constant2map(sigma, x)
|
97 |
+
gamma_map = self.constant2map(gamma, x)
|
98 |
+
return torch.cat((x, noise_level_map, gamma_map), 1)
|
99 |
+
|
100 |
+
def realign_input(self, x, physics, y):
|
101 |
+
r"""
|
102 |
+
Realign the input x based on the measurements y and the physics model.
|
103 |
+
Applies the proximity operator of the L2 norm with respect to the physics model.
|
104 |
+
|
105 |
+
:params torch.Tensor x: Input tensor
|
106 |
+
:params deepinv.physics.Physics physics: Physics model
|
107 |
+
:params torch.Tensor y: Measurements
|
108 |
+
"""
|
109 |
+
if hasattr(physics, "factor"):
|
110 |
+
f = physics.factor
|
111 |
+
elif hasattr(physics, "base") and hasattr(physics.base, "factor"):
|
112 |
+
f = physics.base.factor
|
113 |
+
elif hasattr(physics, "base") and hasattr(physics.base, "base") and hasattr(physics.base.base, "factor"):
|
114 |
+
f = physics.base.base.factor
|
115 |
+
else:
|
116 |
+
f = 1.0
|
117 |
+
|
118 |
+
sigma = 1e-6 # default value
|
119 |
+
if hasattr(physics.noise_model, 'sigma'):
|
120 |
+
sigma = physics.noise_model.sigma
|
121 |
+
if hasattr(physics, 'base') and hasattr(physics.base, 'noise_model') and hasattr(physics.base.noise_model,
|
122 |
+
'sigma'):
|
123 |
+
sigma = physics.base.noise_model.sigma
|
124 |
+
if hasattr(physics, 'base') and hasattr(physics.base, 'base') and hasattr(physics.base.base,
|
125 |
+
'noise_model') and hasattr(
|
126 |
+
physics.base.base.noise_model, 'sigma'):
|
127 |
+
sigma = physics.base.base.noise_model.sigma
|
128 |
+
|
129 |
+
if isinstance(y, TensorList):
|
130 |
+
num = (y[0].reshape(y[0].shape[0], -1).abs().mean(1))
|
131 |
+
else:
|
132 |
+
num = (y.reshape(y.shape[0], -1).abs().mean(1))
|
133 |
+
|
134 |
+
snr = num / (sigma + 1e-4) # SNR equivariant
|
135 |
+
gamma = 1 / (1e-4 + 1 / (
|
136 |
+
snr * f ** 2)) # TODO: check square-root / mean / check if we need to add a factor in front ?
|
137 |
+
gamma = gamma[(...,) + (None,) * (x.dim() - 1)]
|
138 |
+
model_input = physics.prox_l2(x, y, gamma=gamma * self.fact_realign)
|
139 |
+
|
140 |
+
return model_input
|
141 |
+
|
142 |
+
def forward_unet(self, x0, sigma=None, gamma=None, physics=None, y=None):
|
143 |
+
r"""
|
144 |
+
Forward pass of the UNet model.
|
145 |
+
|
146 |
+
:params torch.Tensor x0: init image
|
147 |
+
:params float sigma: Gaussian noise level
|
148 |
+
:params float gamma: Poisson noise gain
|
149 |
+
:params deepinv.physics.Physics physics: physics measurement operator
|
150 |
+
:params torch.Tensor y: measurements
|
151 |
+
"""
|
152 |
+
img_channels = x0.shape[1]
|
153 |
+
physics = MultiScaleLinearPhysics(physics, x0.shape[-3:], device=x0.device)
|
154 |
+
|
155 |
+
if self.separate_head and img_channels not in self.in_channels:
|
156 |
+
raise ValueError(
|
157 |
+
f"Input image has {img_channels} channels, but the network only have heads for {self.in_channels} channels.")
|
158 |
+
|
159 |
+
if y is not None:
|
160 |
+
x0 = self.realign_input(x0, physics, y)
|
161 |
+
|
162 |
+
x0 = self.base_conditioning(x0, sigma, gamma)
|
163 |
+
|
164 |
+
x1 = self.m_head(x0)
|
165 |
+
|
166 |
+
x1_ = self.m_down1(x1, physics=physics, y=y, img_channels=img_channels, scale=0)
|
167 |
+
x2 = self.pool1(x1_)
|
168 |
+
|
169 |
+
x3_ = self.m_down2(x2, physics=physics, y=y, img_channels=img_channels, scale=1)
|
170 |
+
x3 = self.pool2(x3_)
|
171 |
+
|
172 |
+
x4_ = self.m_down3(x3, physics=physics, y=y, img_channels=img_channels, scale=2)
|
173 |
+
x4 = self.pool3(x4_)
|
174 |
+
|
175 |
+
x = self.m_body(x4, physics=physics, y=y, img_channels=img_channels, scale=3)
|
176 |
+
|
177 |
+
x = self.up3(x + x4)
|
178 |
+
x = self.m_up3(x, physics=physics, y=y, img_channels=img_channels, scale=2)
|
179 |
+
|
180 |
+
x = self.up2(x + x3)
|
181 |
+
x = self.m_up2(x, physics=physics, y=y, img_channels=img_channels, scale=1)
|
182 |
+
|
183 |
+
x = self.up1(x + x2)
|
184 |
+
x = self.m_up1(x, physics=physics, y=y, img_channels=img_channels, scale=0)
|
185 |
+
|
186 |
+
x = self.m_tail(x + x1, img_channels)
|
187 |
+
|
188 |
+
return x
|
189 |
+
|
190 |
+
def forward(self, y=None, physics=None):
|
191 |
+
r"""
|
192 |
+
Reconstructs a signal estimate from measurements y
|
193 |
+
:param torch.tensor y: measurements
|
194 |
+
:param deepinv.physics.Physics physics: forward operator
|
195 |
+
"""
|
196 |
+
if physics is None:
|
197 |
+
physics = dinv.physics.Denoising(noise_model=dinv.physics.GaussianNoise(sigma=0.), device=y.device)
|
198 |
+
|
199 |
+
x_temp = physics.A_adjoint(y)
|
200 |
+
pad = (-x_temp.size(-2) % 8, -x_temp.size(-1) % 8)
|
201 |
+
physics = Pad(physics, pad)
|
202 |
+
|
203 |
+
x_in = physics.A_adjoint(y)
|
204 |
+
|
205 |
+
sigma = physics.noise_model.sigma if hasattr(physics.noise_model, "sigma") else 1e-3
|
206 |
+
gamma = physics.noise_model.gain if hasattr(physics.noise_model, "gain") else 1e-3
|
207 |
+
|
208 |
+
out = self.forward_unet(x_in, sigma=sigma, gamma=gamma, physics=physics, y=y)
|
209 |
+
|
210 |
+
out = physics.remove_pad(out)
|
211 |
+
|
212 |
+
return out
|
213 |
+
|
214 |
+
|
215 |
+
### --------------- MODEL ---------------
|
216 |
+
class BaseEncBlock(nn.Module):
|
217 |
+
def __init__(self, in_channels, out_channels, bias=False, nb=4, img_channels=None, decode_upscale=None):
|
218 |
+
super(BaseEncBlock, self).__init__()
|
219 |
+
self.enc = nn.ModuleList(
|
220 |
+
[
|
221 |
+
ResBlock(
|
222 |
+
in_channels,
|
223 |
+
out_channels,
|
224 |
+
bias=bias,
|
225 |
+
img_channels=img_channels,
|
226 |
+
decode_upscale=decode_upscale,
|
227 |
+
)
|
228 |
+
for _ in range(nb)
|
229 |
+
]
|
230 |
+
)
|
231 |
+
|
232 |
+
def forward(self, x, physics=None, y=None, img_channels=None, scale=0):
|
233 |
+
for i in range(len(self.enc)):
|
234 |
+
x = self.enc[i](x, physics=physics, y=y, img_channels=img_channels, scale=scale)
|
235 |
+
return x
|
236 |
+
|
237 |
+
|
238 |
+
def krylov_embeddings(y, p, factor, v=None, N=4, x_init=None):
|
239 |
+
r"""
|
240 |
+
Efficient Krylov subspace embedding computation with parallel processing.
|
241 |
+
|
242 |
+
:params torch.Tensor y: Input tensor.
|
243 |
+
:params p: An object with A and A_adjoint methods (linear operator).
|
244 |
+
:params float factor: Scaling factor.
|
245 |
+
:params torch.Tensor v: Precomputed values to subtract from Krylov sequence. Defaults to None.
|
246 |
+
:params int N: Number of Krylov iterations. Defaults to 4.
|
247 |
+
:params torch.Tensor x_init: Initial guess. Defaults to None.
|
248 |
+
"""
|
249 |
+
|
250 |
+
if x_init is None:
|
251 |
+
x = p.A_adjoint(y)
|
252 |
+
else:
|
253 |
+
x = x_init.clone() # Extract the first img_channels
|
254 |
+
|
255 |
+
norm = factor ** 2 # Precompute normalization factor
|
256 |
+
AtA = lambda u: p.A_adjoint(p.A(u)) * norm # Define the linear operator
|
257 |
+
|
258 |
+
v = v if v is not None else torch.zeros_like(x)
|
259 |
+
|
260 |
+
out = x.clone()
|
261 |
+
# Compute Krylov basis
|
262 |
+
x_k = x.clone()
|
263 |
+
for i in range(N - 1):
|
264 |
+
x_k = AtA(x_k) - v
|
265 |
+
out = torch.cat([out, x_k], dim=1)
|
266 |
+
|
267 |
+
return out
|
268 |
+
|
269 |
+
|
270 |
+
class MeasCondBlock(nn.Module):
|
271 |
+
r"""
|
272 |
+
Measurement conditioning block for the RAM model.
|
273 |
+
|
274 |
+
:param out_channels: Number of output channels.
|
275 |
+
:param img_channels: Number of input channels. If a list is provided, the model will have separate heads for each channel.
|
276 |
+
:param decode_upscale: Upscaling factor for the decoding convolution.
|
277 |
+
:param N: Number of Krylov iterations.
|
278 |
+
:param depth_encoding: Depth of the encoding convolution.
|
279 |
+
:param c_mult: Multiplier for the number of channels.
|
280 |
+
"""
|
281 |
+
|
282 |
+
def __init__(self, out_channels=64, img_channels=None, decode_upscale=None, N=4, depth_encoding=1, c_mult=1):
|
283 |
+
super(MeasCondBlock, self).__init__()
|
284 |
+
|
285 |
+
self.separate_head = isinstance(img_channels, list)
|
286 |
+
|
287 |
+
assert img_channels is not None, "decode_dimensions should be provided"
|
288 |
+
assert decode_upscale is not None, "decode_upscale should be provided"
|
289 |
+
|
290 |
+
self.N = N
|
291 |
+
self.c_mult = c_mult
|
292 |
+
self.relu_encoding = nn.ReLU(inplace=False)
|
293 |
+
self.decoding_conv = Tails(out_channels, img_channels, depth=1, scale=1, bias=False, c_mult=self.c_mult)
|
294 |
+
self.encoding_conv = Heads(img_channels, out_channels, depth=depth_encoding, scale=1, bias=False,
|
295 |
+
c_mult=self.c_mult * N, c_add=N, relu_in=False, skip_in=True)
|
296 |
+
|
297 |
+
self.gain = torch.nn.Parameter(torch.tensor([1.0]), requires_grad=True)
|
298 |
+
self.gain_gradx = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
|
299 |
+
self.gain_grady = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
|
300 |
+
self.gain_pinvx = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
|
301 |
+
self.gain_pinvy = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
|
302 |
+
|
303 |
+
def forward(self, x, y, physics, img_channels=None, scale=1):
|
304 |
+
physics.set_scale(scale)
|
305 |
+
dec = self.decoding_conv(x, img_channels)
|
306 |
+
factor = 2 ** (scale)
|
307 |
+
meas_y = krylov_embeddings(y, physics, factor, N=self.N)
|
308 |
+
meas_dec = krylov_embeddings(y, physics, factor, N=self.N, x_init=dec[:, :img_channels, ...])
|
309 |
+
for c in range(1, self.c_mult):
|
310 |
+
meas_cur = krylov_embeddings(y, physics, factor, N=self.N,
|
311 |
+
x_init=dec[:, img_channels * c:img_channels * (c + 1)])
|
312 |
+
meas_dec = torch.cat([meas_dec, meas_cur], dim=1)
|
313 |
+
meas = torch.cat([meas_y, meas_dec], dim=1)
|
314 |
+
cond = self.encoding_conv(meas)
|
315 |
+
emb = self.relu_encoding(cond)
|
316 |
+
return emb
|
317 |
+
|
318 |
+
|
319 |
+
class ResBlock(nn.Module):
|
320 |
+
r"""
|
321 |
+
Convolutional residual block.
|
322 |
+
|
323 |
+
:param in_channels: Number of input channels.
|
324 |
+
:param out_channels: Number of output channels.
|
325 |
+
:param kernel_size: Size of the convolution kernel.
|
326 |
+
:param stride: Stride of the convolution.
|
327 |
+
:param padding: Padding for the convolution.
|
328 |
+
:param bias: Whether to use bias in the convolution.
|
329 |
+
:param img_channels: Number of input channels. If a list is provided, the model will have separate heads for each channel.
|
330 |
+
:param decode_upscale: Upscaling factor for the decoding convolution.
|
331 |
+
:param head: Whether this is a head block.
|
332 |
+
:param tail: Whether this is a tail block.
|
333 |
+
:param N: Number of Krylov iterations.
|
334 |
+
:param c_mult: Multiplier for the number of channels.
|
335 |
+
:param depth_encoding: Depth of the encoding convolution.
|
336 |
+
"""
|
337 |
+
|
338 |
+
def __init__(
|
339 |
+
self,
|
340 |
+
in_channels=64,
|
341 |
+
out_channels=64,
|
342 |
+
kernel_size=3,
|
343 |
+
stride=1,
|
344 |
+
padding=1,
|
345 |
+
bias=True,
|
346 |
+
img_channels=None,
|
347 |
+
decode_upscale=None,
|
348 |
+
head=False,
|
349 |
+
tail=False,
|
350 |
+
N=2,
|
351 |
+
c_mult=2,
|
352 |
+
depth_encoding=2,
|
353 |
+
):
|
354 |
+
super(ResBlock, self).__init__()
|
355 |
+
|
356 |
+
if not head and not tail:
|
357 |
+
assert in_channels == out_channels, "Only support in_channels==out_channels."
|
358 |
+
self.separate_head = isinstance(img_channels, list)
|
359 |
+
self.is_head = head
|
360 |
+
self.is_tail = tail
|
361 |
+
|
362 |
+
if self.is_head:
|
363 |
+
self.head = InHead(img_channels, out_channels, input_layer=True)
|
364 |
+
|
365 |
+
if not self.is_head and not self.is_tail:
|
366 |
+
self.conv1 = conv(
|
367 |
+
in_channels,
|
368 |
+
out_channels,
|
369 |
+
kernel_size,
|
370 |
+
stride,
|
371 |
+
padding,
|
372 |
+
bias,
|
373 |
+
"C",
|
374 |
+
)
|
375 |
+
self.nl = nn.ReLU(inplace=True)
|
376 |
+
self.conv2 = conv(
|
377 |
+
out_channels,
|
378 |
+
out_channels,
|
379 |
+
kernel_size,
|
380 |
+
stride,
|
381 |
+
padding,
|
382 |
+
bias,
|
383 |
+
"C",
|
384 |
+
)
|
385 |
+
|
386 |
+
self.gain = torch.nn.Parameter(torch.tensor([1.0]), requires_grad=True)
|
387 |
+
self.PhysicsBlock = MeasCondBlock(out_channels=out_channels, c_mult=c_mult,
|
388 |
+
img_channels=img_channels, decode_upscale=decode_upscale,
|
389 |
+
N=N, depth_encoding=depth_encoding)
|
390 |
+
|
391 |
+
def forward(self, x, physics=None, y=None, img_channels=None, scale=0):
|
392 |
+
u = self.conv1(x)
|
393 |
+
u = self.nl(u)
|
394 |
+
u_2 = self.conv2(u)
|
395 |
+
emb_grad = self.PhysicsBlock(u, y, physics, img_channels=img_channels, scale=scale)
|
396 |
+
u_1 = self.gain * emb_grad
|
397 |
+
return x + u_2 + u_1
|
398 |
+
|
399 |
+
|
400 |
+
class InHead(torch.nn.Module):
|
401 |
+
def __init__(self, in_channels_list, out_channels, mode="", bias=False, input_layer=False):
|
402 |
+
super(InHead, self).__init__()
|
403 |
+
self.in_channels_list = in_channels_list
|
404 |
+
self.input_layer = input_layer
|
405 |
+
for i, in_channels in enumerate(in_channels_list):
|
406 |
+
conv = AffineConv2d(
|
407 |
+
in_channels=in_channels,
|
408 |
+
out_channels=out_channels,
|
409 |
+
bias=bias,
|
410 |
+
mode=mode,
|
411 |
+
kernel_size=3,
|
412 |
+
stride=1,
|
413 |
+
padding=1,
|
414 |
+
padding_mode="zeros",
|
415 |
+
)
|
416 |
+
setattr(self, f"conv{i}", conv)
|
417 |
+
|
418 |
+
def forward(self, x):
|
419 |
+
in_channels = x.size(1) - 1 if self.input_layer else x.size(1)
|
420 |
+
|
421 |
+
# find index
|
422 |
+
i = self.in_channels_list.index(in_channels)
|
423 |
+
x = getattr(self, f"conv{i}")(x)
|
424 |
+
|
425 |
+
return x
|
426 |
+
|
427 |
+
|
428 |
+
class OutTail(torch.nn.Module):
|
429 |
+
def __init__(self, in_channels, out_channels_list, mode="", bias=False):
|
430 |
+
super(OutTail, self).__init__()
|
431 |
+
self.in_channels = in_channels
|
432 |
+
self.out_channels_list = out_channels_list
|
433 |
+
for i, out_channels in enumerate(out_channels_list):
|
434 |
+
conv = AffineConv2d(
|
435 |
+
in_channels=in_channels,
|
436 |
+
out_channels=out_channels,
|
437 |
+
bias=bias,
|
438 |
+
mode=mode,
|
439 |
+
kernel_size=3,
|
440 |
+
stride=1,
|
441 |
+
padding=1,
|
442 |
+
padding_mode="zeros",
|
443 |
+
)
|
444 |
+
setattr(self, f"conv{i}", conv)
|
445 |
+
|
446 |
+
def forward(self, x, out_channels):
|
447 |
+
i = self.out_channels_list.index(out_channels)
|
448 |
+
x = getattr(self, f"conv{i}")(x)
|
449 |
+
|
450 |
+
return x
|
451 |
+
|
452 |
+
|
453 |
+
class Heads(torch.nn.Module):
|
454 |
+
def __init__(self, in_channels_list, out_channels, depth=2, scale=1, bias=True, mode="bilinear", c_mult=1, c_add=0,
|
455 |
+
relu_in=False, skip_in=False):
|
456 |
+
super(Heads, self).__init__()
|
457 |
+
self.in_channels_list = [c * (c_mult + c_add) for c in in_channels_list]
|
458 |
+
self.scale = scale
|
459 |
+
self.mode = mode
|
460 |
+
for i, in_channels in enumerate(self.in_channels_list):
|
461 |
+
setattr(self, f"head{i}",
|
462 |
+
HeadBlock(in_channels, out_channels, depth=depth, bias=bias, relu_in=relu_in, skip_in=skip_in))
|
463 |
+
|
464 |
+
if self.mode == "":
|
465 |
+
self.nl = torch.nn.ReLU(inplace=False)
|
466 |
+
if self.scale != 1:
|
467 |
+
for i, in_channels in enumerate(in_channels_list):
|
468 |
+
setattr(self, f"down{i}",
|
469 |
+
downsample_strideconv(in_channels, in_channels, bias=False, mode=str(self.scale)))
|
470 |
+
|
471 |
+
def forward(self, x):
|
472 |
+
in_channels = x.size(1)
|
473 |
+
i = self.in_channels_list.index(in_channels)
|
474 |
+
|
475 |
+
if self.scale != 1:
|
476 |
+
if self.mode == "bilinear":
|
477 |
+
x = torch.nn.functional.interpolate(x, scale_factor=1 / self.scale, mode='bilinear',
|
478 |
+
align_corners=False)
|
479 |
+
else:
|
480 |
+
x = getattr(self, f"down{i}")(x)
|
481 |
+
x = self.nl(x)
|
482 |
+
|
483 |
+
# find index
|
484 |
+
x = getattr(self, f"head{i}")(x)
|
485 |
+
|
486 |
+
return x
|
487 |
+
|
488 |
+
|
489 |
+
class Tails(torch.nn.Module):
|
490 |
+
def __init__(self, in_channels, out_channels_list, depth=2, scale=1, bias=True, mode="bilinear", c_mult=1,
|
491 |
+
relu_in=False, skip_in=False):
|
492 |
+
super(Tails, self).__init__()
|
493 |
+
self.out_channels_list = out_channels_list
|
494 |
+
self.scale = scale
|
495 |
+
for i, out_channels in enumerate(out_channels_list):
|
496 |
+
setattr(self, f"tail{i}",
|
497 |
+
HeadBlock(in_channels, out_channels * c_mult, depth=depth, bias=bias, relu_in=relu_in,
|
498 |
+
skip_in=skip_in))
|
499 |
+
|
500 |
+
self.mode = mode
|
501 |
+
if self.mode == "":
|
502 |
+
self.nl = torch.nn.ReLU(inplace=False)
|
503 |
+
if self.scale != 1:
|
504 |
+
for i, out_channels in enumerate(out_channels_list):
|
505 |
+
setattr(self, f"up{i}",
|
506 |
+
upsample_convtranspose(out_channels * c_mult, out_channels * c_mult, bias=bias,
|
507 |
+
mode=str(self.scale)))
|
508 |
+
|
509 |
+
def forward(self, x, out_channels):
|
510 |
+
i = self.out_channels_list.index(out_channels)
|
511 |
+
x = getattr(self, f"tail{i}")(x)
|
512 |
+
# find index
|
513 |
+
if self.scale != 1:
|
514 |
+
if self.mode == "bilinear":
|
515 |
+
x = torch.nn.functional.interpolate(x, scale_factor=self.scale, mode='bilinear', align_corners=False)
|
516 |
+
else:
|
517 |
+
x = getattr(self, f"up{i}")(x)
|
518 |
+
|
519 |
+
return x
|
520 |
+
|
521 |
+
|
522 |
+
class HeadBlock(torch.nn.Module):
|
523 |
+
def __init__(self, in_channels, out_channels, kernel_size=3, bias=True, depth=2, relu_in=False, skip_in=False):
|
524 |
+
super(HeadBlock, self).__init__()
|
525 |
+
|
526 |
+
padding = kernel_size // 2
|
527 |
+
|
528 |
+
c = out_channels if depth < 2 else in_channels
|
529 |
+
|
530 |
+
self.convin = torch.nn.Conv2d(in_channels, c, kernel_size, padding=padding, bias=bias)
|
531 |
+
self.zero_conv_skip = torch.nn.Conv2d(in_channels, c, 1, bias=False)
|
532 |
+
self.depth = depth
|
533 |
+
self.nl_1 = torch.nn.ReLU(inplace=False)
|
534 |
+
self.nl_2 = torch.nn.ReLU(inplace=False)
|
535 |
+
self.relu_in = relu_in
|
536 |
+
self.skip_in = skip_in
|
537 |
+
|
538 |
+
for i in range(depth - 1):
|
539 |
+
if i < depth - 2:
|
540 |
+
c_in, c = in_channels, in_channels
|
541 |
+
else:
|
542 |
+
c_in, c = in_channels, out_channels
|
543 |
+
|
544 |
+
setattr(self, f"conv1{i}", torch.nn.Conv2d(c_in, c_in, kernel_size, padding=padding, bias=bias))
|
545 |
+
setattr(self, f"conv2{i}", torch.nn.Conv2d(c_in, c, kernel_size, padding=padding, bias=bias))
|
546 |
+
setattr(self, f"skipconv{i}", torch.nn.Conv2d(c_in, c, 1, bias=False))
|
547 |
+
|
548 |
+
def forward(self, x):
|
549 |
+
|
550 |
+
if self.skip_in and self.relu_in:
|
551 |
+
x = self.nl_1(self.convin(x)) + self.zero_conv_skip(x)
|
552 |
+
elif self.skip_in and not self.relu_in:
|
553 |
+
x = self.convin(x) + self.zero_conv_skip(x)
|
554 |
+
else:
|
555 |
+
x = self.convin(x)
|
556 |
+
|
557 |
+
for i in range(self.depth - 1):
|
558 |
+
aux = getattr(self, f"conv1{i}")(x)
|
559 |
+
aux = self.nl_2(aux)
|
560 |
+
aux_0 = getattr(self, f"conv2{i}")(aux)
|
561 |
+
aux_1 = getattr(self, f"skipconv{i}")(x)
|
562 |
+
x = aux_0 + aux_1
|
563 |
+
|
564 |
+
return x
|
565 |
+
|
566 |
+
|
567 |
+
# --------------------------------------------------------------------------------------
|
568 |
+
class AffineConv2d(nn.Conv2d):
|
569 |
+
def __init__(
|
570 |
+
self,
|
571 |
+
in_channels,
|
572 |
+
out_channels,
|
573 |
+
kernel_size,
|
574 |
+
mode="affine",
|
575 |
+
bias=False,
|
576 |
+
stride=1,
|
577 |
+
padding=0,
|
578 |
+
dilation=1,
|
579 |
+
groups=1,
|
580 |
+
padding_mode="circular",
|
581 |
+
blind=True,
|
582 |
+
):
|
583 |
+
if mode == "affine": # f(a*x + 1) = a*f(x) + 1
|
584 |
+
bias = False
|
585 |
+
super().__init__(
|
586 |
+
in_channels,
|
587 |
+
out_channels,
|
588 |
+
kernel_size,
|
589 |
+
bias=bias,
|
590 |
+
stride=stride,
|
591 |
+
padding=padding,
|
592 |
+
dilation=dilation,
|
593 |
+
groups=groups,
|
594 |
+
padding_mode=padding_mode,
|
595 |
+
)
|
596 |
+
self.blind = blind
|
597 |
+
self.mode = mode
|
598 |
+
|
599 |
+
def affine(self, w):
|
600 |
+
"""returns new kernels that encode affine combinations"""
|
601 |
+
return (
|
602 |
+
w.view(self.out_channels, -1).roll(1, 1).view(w.size())
|
603 |
+
- w
|
604 |
+
+ 1 / w[0, ...].numel()
|
605 |
+
)
|
606 |
+
|
607 |
+
def forward(self, x):
|
608 |
+
if self.mode != "affine":
|
609 |
+
return super().forward(x)
|
610 |
+
else:
|
611 |
+
kernel = (
|
612 |
+
self.affine(self.weight)
|
613 |
+
if self.blind
|
614 |
+
else torch.cat(
|
615 |
+
(self.affine(self.weight[:, :-1, :, :]), self.weight[:, -1:, :, :]),
|
616 |
+
dim=1,
|
617 |
+
)
|
618 |
+
)
|
619 |
+
padding = tuple(
|
620 |
+
elt for elt in reversed(self.padding) for _ in range(2)
|
621 |
+
) # used to translate padding arg used by Conv module to the ones used by F.pad
|
622 |
+
padding_mode = (
|
623 |
+
self.padding_mode if self.padding_mode != "zeros" else "constant"
|
624 |
+
) # used to translate padding_mode arg used by Conv module to the ones used by F.pad
|
625 |
+
return F.conv2d(
|
626 |
+
F.pad(x, padding, mode=padding_mode),
|
627 |
+
kernel,
|
628 |
+
stride=self.stride,
|
629 |
+
dilation=self.dilation,
|
630 |
+
groups=self.groups,
|
631 |
+
)
|
632 |
+
|
633 |
+
|
634 |
+
"""
|
635 |
+
Functional blocks below
|
636 |
+
|
637 |
+
Parts of code borrowed from
|
638 |
+
https://github.com/cszn/DPIR/tree/master/models
|
639 |
+
https://github.com/xinntao/BasicSR
|
640 |
+
"""
|
641 |
+
from collections import OrderedDict
|
642 |
+
import torch
|
643 |
+
import torch.nn as nn
|
644 |
+
|
645 |
+
"""
|
646 |
+
# --------------------------------------------
|
647 |
+
# Advanced nn.Sequential
|
648 |
+
# https://github.com/xinntao/BasicSR
|
649 |
+
# --------------------------------------------
|
650 |
+
"""
|
651 |
+
|
652 |
+
|
653 |
+
def sequential(*args):
|
654 |
+
"""Advanced nn.Sequential.
|
655 |
+
Args:
|
656 |
+
nn.Sequential, nn.Module
|
657 |
+
Returns:
|
658 |
+
nn.Sequential
|
659 |
+
"""
|
660 |
+
if len(args) == 1:
|
661 |
+
if isinstance(args[0], OrderedDict):
|
662 |
+
raise NotImplementedError("sequential does not support OrderedDict input.")
|
663 |
+
return args[0] # No sequential is needed.
|
664 |
+
modules = []
|
665 |
+
for module in args:
|
666 |
+
if isinstance(module, nn.Sequential):
|
667 |
+
for submodule in module.children():
|
668 |
+
modules.append(submodule)
|
669 |
+
elif isinstance(module, nn.Module):
|
670 |
+
modules.append(module)
|
671 |
+
return nn.Sequential(*modules)
|
672 |
+
|
673 |
+
|
674 |
+
def conv(
|
675 |
+
in_channels=64,
|
676 |
+
out_channels=64,
|
677 |
+
kernel_size=3,
|
678 |
+
stride=1,
|
679 |
+
padding=1,
|
680 |
+
bias=True,
|
681 |
+
mode="CBR",
|
682 |
+
):
|
683 |
+
L = []
|
684 |
+
for t in mode:
|
685 |
+
if t == "C":
|
686 |
+
L.append(
|
687 |
+
nn.Conv2d(
|
688 |
+
in_channels=in_channels,
|
689 |
+
out_channels=out_channels,
|
690 |
+
kernel_size=kernel_size,
|
691 |
+
stride=stride,
|
692 |
+
padding=padding,
|
693 |
+
bias=bias,
|
694 |
+
)
|
695 |
+
)
|
696 |
+
elif t == "T":
|
697 |
+
L.append(
|
698 |
+
nn.ConvTranspose2d(
|
699 |
+
in_channels=in_channels,
|
700 |
+
out_channels=out_channels,
|
701 |
+
kernel_size=kernel_size,
|
702 |
+
stride=stride,
|
703 |
+
padding=padding,
|
704 |
+
bias=bias,
|
705 |
+
)
|
706 |
+
)
|
707 |
+
elif t == "R":
|
708 |
+
L.append(nn.ReLU(inplace=True))
|
709 |
+
else:
|
710 |
+
raise NotImplementedError("Undefined type: ".format(t))
|
711 |
+
return sequential(*L)
|
712 |
+
|
713 |
+
|
714 |
+
# --------------------------------------------
|
715 |
+
# convTranspose (+ relu)
|
716 |
+
# --------------------------------------------
|
717 |
+
def upsample_convtranspose(
|
718 |
+
in_channels=64,
|
719 |
+
out_channels=3,
|
720 |
+
padding=0,
|
721 |
+
bias=True,
|
722 |
+
mode="2R",
|
723 |
+
):
|
724 |
+
assert len(mode) < 4 and mode[0] in [
|
725 |
+
"2",
|
726 |
+
"3",
|
727 |
+
"4",
|
728 |
+
"8",
|
729 |
+
], "mode examples: 2, 2R, 2BR, 3, ..., 4BR."
|
730 |
+
kernel_size = int(mode[0])
|
731 |
+
stride = int(mode[0])
|
732 |
+
mode = mode.replace(mode[0], "T")
|
733 |
+
up1 = conv(
|
734 |
+
in_channels,
|
735 |
+
out_channels,
|
736 |
+
kernel_size,
|
737 |
+
stride,
|
738 |
+
padding,
|
739 |
+
bias,
|
740 |
+
mode,
|
741 |
+
)
|
742 |
+
return up1
|
743 |
+
|
744 |
+
|
745 |
+
def downsample_strideconv(
|
746 |
+
in_channels=64,
|
747 |
+
out_channels=64,
|
748 |
+
padding=0,
|
749 |
+
bias=True,
|
750 |
+
mode="2R",
|
751 |
+
):
|
752 |
+
assert len(mode) < 4 and mode[0] in [
|
753 |
+
"2",
|
754 |
+
"3",
|
755 |
+
"4",
|
756 |
+
"8",
|
757 |
+
], "mode examples: 2, 2R, 2BR, 3, ..., 4BR."
|
758 |
+
kernel_size = int(mode[0])
|
759 |
+
stride = int(mode[0])
|
760 |
+
mode = mode.replace(mode[0], "C")
|
761 |
+
down1 = conv(
|
762 |
+
in_channels,
|
763 |
+
out_channels,
|
764 |
+
kernel_size,
|
765 |
+
stride,
|
766 |
+
padding,
|
767 |
+
bias,
|
768 |
+
mode,
|
769 |
+
)
|
770 |
+
return down1
|
771 |
+
|
772 |
+
|
773 |
+
class Upsampling(Downsampling):
|
774 |
+
def A(self, x, **kwargs):
|
775 |
+
return super().A_adjoint(x, **kwargs)
|
776 |
+
|
777 |
+
def A_adjoint(self, y, **kwargs):
|
778 |
+
return super().A(y, **kwargs)
|
779 |
+
|
780 |
+
def prox_l2(self, z, y, gamma, **kwargs):
|
781 |
+
return super().prox_l2(z, y, gamma, **kwargs)
|
782 |
+
|
783 |
+
|
784 |
+
class MultiScalePhysics(Physics):
|
785 |
+
def __init__(self, physics, img_shape, filter="sinc", scales=[2, 4, 8], device='cpu', **kwargs):
|
786 |
+
super().__init__(noise_model=physics.noise_model, **kwargs)
|
787 |
+
self.base = physics
|
788 |
+
self.scales = scales
|
789 |
+
self.img_shape = img_shape
|
790 |
+
self.Upsamplings = [Upsampling(img_size=img_shape, filter=filter, factor=factor, device=device) for factor in
|
791 |
+
scales]
|
792 |
+
self.scale = 0
|
793 |
+
|
794 |
+
def set_scale(self, scale):
|
795 |
+
if scale is not None:
|
796 |
+
self.scale = scale
|
797 |
+
|
798 |
+
def A(self, x, scale=None, **kwargs):
|
799 |
+
self.set_scale(scale)
|
800 |
+
if self.scale == 0:
|
801 |
+
return self.base.A(x, **kwargs)
|
802 |
+
else:
|
803 |
+
return self.base.A(self.Upsamplings[self.scale - 1].A(x), **kwargs)
|
804 |
+
|
805 |
+
def downsample(self, x, scale=None):
|
806 |
+
self.set_scale(scale)
|
807 |
+
if self.scale == 0:
|
808 |
+
return x
|
809 |
+
else:
|
810 |
+
return self.Upsamplings[self.scale - 1].A_adjoint(x)
|
811 |
+
|
812 |
+
def upsample(self, x, scale=None):
|
813 |
+
self.set_scale(scale)
|
814 |
+
if self.scale == 0:
|
815 |
+
return x
|
816 |
+
else:
|
817 |
+
return self.Upsamplings[self.scale - 1].A(x)
|
818 |
+
|
819 |
+
def update_parameters(self, **kwargs):
|
820 |
+
self.base.update_parameters(**kwargs)
|
821 |
+
|
822 |
+
|
823 |
+
class MultiScaleLinearPhysics(MultiScalePhysics, LinearPhysics):
|
824 |
+
def __init__(self, physics, img_shape, filter="sinc", scales=[2, 4, 8], **kwargs):
|
825 |
+
super().__init__(physics=physics, img_shape=img_shape, filter=filter, scales=scales, **kwargs)
|
826 |
+
|
827 |
+
def A_adjoint(self, y, scale=None, **kwargs):
|
828 |
+
self.set_scale(scale)
|
829 |
+
y = self.base.A_adjoint(y, **kwargs)
|
830 |
+
if self.scale == 0:
|
831 |
+
return y
|
832 |
+
else:
|
833 |
+
return self.Upsamplings[self.scale - 1].A_adjoint(y)
|
834 |
+
|
835 |
+
|
836 |
+
class Pad(LinearPhysics):
|
837 |
+
def __init__(self, physics, pad):
|
838 |
+
super().__init__(noise_model=physics.noise_model)
|
839 |
+
self.base = physics
|
840 |
+
self.pad = pad
|
841 |
+
|
842 |
+
def A(self, x):
|
843 |
+
return self.base.A(x[..., self.pad[0]:, self.pad[1]:])
|
844 |
+
|
845 |
+
def A_adjoint(self, y):
|
846 |
+
y = self.base.A_adjoint(y)
|
847 |
+
y = torch.nn.functional.pad(y, (self.pad[1], 0, self.pad[0], 0))
|
848 |
+
return y
|
849 |
+
|
850 |
+
def remove_pad(self, x):
|
851 |
+
return x[..., self.pad[0]:, self.pad[1]:]
|
852 |
+
|
853 |
+
def update_parameters(self, **kwargs):
|
854 |
+
self.base.update_parameters(**kwargs)
|
models/unext_wip.py
DELETED
@@ -1,1238 +0,0 @@
|
|
1 |
-
# Code borrowed from Kai Zhang https://github.com/cszn/DPIR/tree/master/models
|
2 |
-
import re
|
3 |
-
import math
|
4 |
-
import functools
|
5 |
-
|
6 |
-
import deepinv as dinv
|
7 |
-
from deepinv.utils import plot, TensorList
|
8 |
-
|
9 |
-
import torch
|
10 |
-
from torch.func import vmap
|
11 |
-
import torch.nn as nn
|
12 |
-
import torch.nn.functional as F
|
13 |
-
from torchvision import transforms
|
14 |
-
from deepinv.optim.utils import conjugate_gradient
|
15 |
-
|
16 |
-
from physics.multiscale import MultiScaleLinearPhysics, Pad
|
17 |
-
from models.blocks import EquivMaxPool, AffineConv2d, ConvNextBlock2, NoiseEmbedding, MPConv, TimestepEmbedding, conv, downsample_strideconv, upsample_convtranspose
|
18 |
-
from models.heads import Heads, Tails, InHead, OutTail, ConvChannels, SNRModule, EquivConvModule, EquivHeads
|
19 |
-
|
20 |
-
cuda = True if torch.cuda.is_available() else False
|
21 |
-
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
|
22 |
-
|
23 |
-
|
24 |
-
### --------------- MODEL ---------------
|
25 |
-
class BaseEncBlock(nn.Module):
|
26 |
-
def __init__(
|
27 |
-
self,
|
28 |
-
in_channels,
|
29 |
-
out_channels,
|
30 |
-
bias=False,
|
31 |
-
mode="CRC",
|
32 |
-
nb=2,
|
33 |
-
embedding=False,
|
34 |
-
emb_channels=None,
|
35 |
-
emb_physics=False,
|
36 |
-
img_channels=None,
|
37 |
-
decode_upscale=None,
|
38 |
-
config='A',
|
39 |
-
N=4,
|
40 |
-
c_mult=1,
|
41 |
-
depth_encoding=1,
|
42 |
-
relu_in_encoding=False,
|
43 |
-
skip_in_encoding=True,
|
44 |
-
):
|
45 |
-
super(BaseEncBlock, self).__init__()
|
46 |
-
self.config = config
|
47 |
-
self.enc = nn.ModuleList(
|
48 |
-
[
|
49 |
-
ResBlock(
|
50 |
-
in_channels,
|
51 |
-
out_channels,
|
52 |
-
bias=bias,
|
53 |
-
mode=mode,
|
54 |
-
embedding=embedding,
|
55 |
-
emb_channels=emb_channels,
|
56 |
-
emb_physics=emb_physics,
|
57 |
-
img_channels=img_channels,
|
58 |
-
decode_upscale=decode_upscale,
|
59 |
-
config=config,
|
60 |
-
N=N,
|
61 |
-
c_mult=c_mult,
|
62 |
-
depth_encoding=depth_encoding,
|
63 |
-
relu_in_encoding=relu_in_encoding,
|
64 |
-
skip_in_encoding=skip_in_encoding,
|
65 |
-
)
|
66 |
-
for _ in range(nb)
|
67 |
-
]
|
68 |
-
)
|
69 |
-
|
70 |
-
def forward(self, x, emb_sigma=None, physics=None, t=None, y=None, emb_in=None, img_channels=None, scale=0):
|
71 |
-
for i in range(len(self.enc)):
|
72 |
-
x = self.enc[i](x, emb_sigma=emb_sigma, physics=physics, t=t, y=y, img_channels=img_channels, scale=scale)
|
73 |
-
return x
|
74 |
-
|
75 |
-
|
76 |
-
class NextEncBlock(nn.Module):
|
77 |
-
def __init__(
|
78 |
-
self, in_channels, out_channels, bias=False, mode="", mult_fact=4, nb=2
|
79 |
-
):
|
80 |
-
super(NextEncBlock, self).__init__()
|
81 |
-
self.enc = nn.ModuleList(
|
82 |
-
[
|
83 |
-
ConvNextBlock2(
|
84 |
-
in_channels=in_channels,
|
85 |
-
out_channels=out_channels,
|
86 |
-
bias=bias,
|
87 |
-
mode=mode,
|
88 |
-
mult_fact=mult_fact,
|
89 |
-
)
|
90 |
-
for _ in range(nb)
|
91 |
-
]
|
92 |
-
)
|
93 |
-
|
94 |
-
def forward(self, x, emb_sigma=None):
|
95 |
-
for i in range(len(self.enc)):
|
96 |
-
x = self.enc[i](x, emb_sigma)
|
97 |
-
return x
|
98 |
-
|
99 |
-
|
100 |
-
class UNeXt(nn.Module):
|
101 |
-
r"""
|
102 |
-
DRUNet denoiser network.
|
103 |
-
|
104 |
-
The network architecture is based on the paper
|
105 |
-
`Learning deep CNN denoiser prior for image restoration <https://arxiv.org/abs/1704.03264>`_,
|
106 |
-
and has a U-Net like structure, with convolutional blocks in the encoder and decoder parts.
|
107 |
-
|
108 |
-
The network takes into account the noise level of the input image, which is encoded as an additional input channel.
|
109 |
-
|
110 |
-
A pretrained network for (in_channels=out_channels=1 or in_channels=out_channels=3)
|
111 |
-
can be downloaded via setting ``pretrained='download'``.
|
112 |
-
|
113 |
-
:param int in_channels: number of channels of the input.
|
114 |
-
:param int out_channels: number of channels of the output.
|
115 |
-
:param list nc: number of convolutional layers.
|
116 |
-
:param int nb: number of convolutional blocks per layer.
|
117 |
-
:param int nf: number of channels per convolutional layer.
|
118 |
-
:param str act_mode: activation mode, "R" for ReLU, "L" for LeakyReLU "E" for ELU and "S" for Softplus.
|
119 |
-
:param str downsample_mode: Downsampling mode, "avgpool" for average pooling, "maxpool" for max pooling, and
|
120 |
-
"strideconv" for convolution with stride 2.
|
121 |
-
:param str upsample_mode: Upsampling mode, "convtranspose" for convolution transpose, "pixelsuffle" for pixel
|
122 |
-
shuffling, and "upconv" for nearest neighbour upsampling with additional convolution.
|
123 |
-
:param str, None pretrained: use a pretrained network. If ``pretrained=None``, the weights will be initialized at random
|
124 |
-
using Pytorch's default initialization. If ``pretrained='download'``, the weights will be downloaded from an
|
125 |
-
online repository (only available for the default architecture with 3 or 1 input/output channels).
|
126 |
-
Finally, ``pretrained`` can also be set as a path to the user's own pretrained weights.
|
127 |
-
See :ref:`pretrained-weights <pretrained-weights>` for more details.
|
128 |
-
:param bool train: training or testing mode.
|
129 |
-
:param str device: gpu or cpu.
|
130 |
-
|
131 |
-
"""
|
132 |
-
|
133 |
-
def __init__(
|
134 |
-
self,
|
135 |
-
in_channels=[1, 2, 3],
|
136 |
-
out_channels=[1, 2, 3],
|
137 |
-
nc=[64, 128, 256, 512],
|
138 |
-
nb=4, # 4 in DRUNet but out of memory
|
139 |
-
conv_type="next", # should be 'base' or 'next'
|
140 |
-
pool_type="next", # should be 'base' or 'next'
|
141 |
-
cond_type="base", # conditioning, should be 'base' or 'edm'
|
142 |
-
device=None,
|
143 |
-
bias=False,
|
144 |
-
mode="",
|
145 |
-
residual=False,
|
146 |
-
act_mode="R",
|
147 |
-
layer_scale_init_value=1e-6,
|
148 |
-
init_type="ortho",
|
149 |
-
gain_init_conv=1.0,
|
150 |
-
gain_init_linear=1.0,
|
151 |
-
drop_prob=0.0,
|
152 |
-
replk=False,
|
153 |
-
mult_fact=4,
|
154 |
-
antialias="gaussian",
|
155 |
-
emb_physics=False,
|
156 |
-
config='A',
|
157 |
-
pretrained_pth=None,
|
158 |
-
N=4,
|
159 |
-
c_mult=1,
|
160 |
-
depth_encoding=1,
|
161 |
-
relu_in_encoding=False,
|
162 |
-
skip_in_encoding=True,
|
163 |
-
):
|
164 |
-
super(UNeXt, self).__init__()
|
165 |
-
|
166 |
-
self.residual = residual
|
167 |
-
self.conv_type = conv_type
|
168 |
-
self.pool_type = pool_type
|
169 |
-
self.emb_physics = emb_physics
|
170 |
-
self.config = config
|
171 |
-
self.in_channels = in_channels
|
172 |
-
self.fact_realign = torch.nn.Parameter(torch.tensor([1.0], device=device))
|
173 |
-
|
174 |
-
self.separate_head = isinstance(in_channels, list)
|
175 |
-
|
176 |
-
assert cond_type in ["base", "edm"], "cond_type should be 'base' or 'edm'"
|
177 |
-
self.cond_type = cond_type
|
178 |
-
|
179 |
-
if self.cond_type == "base":
|
180 |
-
if self.config != 'E':
|
181 |
-
if isinstance(in_channels, list):
|
182 |
-
in_channels_first = []
|
183 |
-
for i in range(len(in_channels)):
|
184 |
-
in_channels_first.append(in_channels[i] + 2)
|
185 |
-
else: # old head
|
186 |
-
in_channels_first = in_channels + 1
|
187 |
-
else:
|
188 |
-
in_channels_first = in_channels
|
189 |
-
else:
|
190 |
-
in_channels_first = in_channels
|
191 |
-
self.noise_embedding = NoiseEmbedding(
|
192 |
-
num_channels=in_channels, emb_channels=max(nc), device=device
|
193 |
-
)
|
194 |
-
|
195 |
-
self.timestep_embedding = lambda x: x
|
196 |
-
|
197 |
-
# check if in_channels is a list
|
198 |
-
self.m_head = InHead(in_channels_first, nc[0])
|
199 |
-
|
200 |
-
if conv_type == "next":
|
201 |
-
self.m_down1 = NextEncBlock(
|
202 |
-
nc[0], nc[0], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
|
203 |
-
)
|
204 |
-
self.m_down2 = NextEncBlock(
|
205 |
-
nc[1], nc[1], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
|
206 |
-
)
|
207 |
-
self.m_down3 = NextEncBlock(
|
208 |
-
nc[2], nc[2], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
|
209 |
-
)
|
210 |
-
self.m_body = NextEncBlock(
|
211 |
-
nc[3], nc[3], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
|
212 |
-
)
|
213 |
-
self.m_up3 = NextEncBlock(
|
214 |
-
nc[2], nc[2], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
|
215 |
-
)
|
216 |
-
self.m_up2 = NextEncBlock(
|
217 |
-
nc[1], nc[1], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
|
218 |
-
)
|
219 |
-
self.m_up1 = NextEncBlock(
|
220 |
-
nc[0], nc[0], bias=bias, mode=mode, mult_fact=mult_fact, nb=nb
|
221 |
-
)
|
222 |
-
|
223 |
-
elif conv_type == "base":
|
224 |
-
embedding = (
|
225 |
-
False if cond_type == "base" else True
|
226 |
-
)
|
227 |
-
emb_channels = max(nc)
|
228 |
-
self.m_down1 = BaseEncBlock(
|
229 |
-
nc[0],
|
230 |
-
nc[0],
|
231 |
-
bias=False,
|
232 |
-
mode="CRC",
|
233 |
-
nb=nb,
|
234 |
-
embedding=embedding,
|
235 |
-
emb_channels=emb_channels,
|
236 |
-
emb_physics=emb_physics,
|
237 |
-
img_channels=in_channels,
|
238 |
-
decode_upscale=1,
|
239 |
-
config=config,
|
240 |
-
N=N,
|
241 |
-
c_mult=c_mult,
|
242 |
-
depth_encoding=depth_encoding,
|
243 |
-
relu_in_encoding=relu_in_encoding,
|
244 |
-
skip_in_encoding=skip_in_encoding,
|
245 |
-
)
|
246 |
-
self.m_down2 = BaseEncBlock(
|
247 |
-
nc[1],
|
248 |
-
nc[1],
|
249 |
-
bias=False,
|
250 |
-
mode="CRC",
|
251 |
-
nb=nb,
|
252 |
-
embedding=embedding,
|
253 |
-
emb_channels=emb_channels,
|
254 |
-
emb_physics=emb_physics,
|
255 |
-
img_channels=in_channels,
|
256 |
-
decode_upscale=2,
|
257 |
-
config=config,
|
258 |
-
N=N,
|
259 |
-
c_mult=c_mult,
|
260 |
-
depth_encoding=depth_encoding,
|
261 |
-
relu_in_encoding=relu_in_encoding,
|
262 |
-
skip_in_encoding=skip_in_encoding,
|
263 |
-
)
|
264 |
-
self.m_down3 = BaseEncBlock(
|
265 |
-
nc[2],
|
266 |
-
nc[2],
|
267 |
-
bias=False,
|
268 |
-
mode="CRC",
|
269 |
-
nb=nb,
|
270 |
-
embedding=embedding,
|
271 |
-
emb_channels=emb_channels,
|
272 |
-
emb_physics=emb_physics,
|
273 |
-
img_channels=in_channels,
|
274 |
-
decode_upscale=4,
|
275 |
-
config=config,
|
276 |
-
N=N,
|
277 |
-
c_mult=c_mult,
|
278 |
-
depth_encoding=depth_encoding,
|
279 |
-
relu_in_encoding=relu_in_encoding,
|
280 |
-
skip_in_encoding=skip_in_encoding,
|
281 |
-
)
|
282 |
-
self.m_body = BaseEncBlock(
|
283 |
-
nc[3],
|
284 |
-
nc[3],
|
285 |
-
bias=False,
|
286 |
-
mode="CRC",
|
287 |
-
nb=nb,
|
288 |
-
embedding=embedding,
|
289 |
-
emb_channels=emb_channels,
|
290 |
-
emb_physics=emb_physics,
|
291 |
-
img_channels=in_channels,
|
292 |
-
decode_upscale=8,
|
293 |
-
config=config,
|
294 |
-
N=N,
|
295 |
-
c_mult=c_mult,
|
296 |
-
depth_encoding=depth_encoding,
|
297 |
-
relu_in_encoding=relu_in_encoding,
|
298 |
-
skip_in_encoding=skip_in_encoding,
|
299 |
-
)
|
300 |
-
self.m_up3 = BaseEncBlock(
|
301 |
-
nc[2],
|
302 |
-
nc[2],
|
303 |
-
bias=False,
|
304 |
-
mode="CRC",
|
305 |
-
nb=nb,
|
306 |
-
embedding=embedding,
|
307 |
-
emb_channels=emb_channels,
|
308 |
-
emb_physics=emb_physics,
|
309 |
-
img_channels=in_channels,
|
310 |
-
decode_upscale=4,
|
311 |
-
config=config,
|
312 |
-
N=N,
|
313 |
-
c_mult=c_mult,
|
314 |
-
depth_encoding=depth_encoding,
|
315 |
-
relu_in_encoding=relu_in_encoding,
|
316 |
-
skip_in_encoding=skip_in_encoding,
|
317 |
-
)
|
318 |
-
self.m_up2 = BaseEncBlock(
|
319 |
-
nc[1],
|
320 |
-
nc[1],
|
321 |
-
bias=False,
|
322 |
-
mode="CRC",
|
323 |
-
nb=nb,
|
324 |
-
embedding=embedding,
|
325 |
-
emb_channels=emb_channels,
|
326 |
-
emb_physics=emb_physics,
|
327 |
-
img_channels=in_channels,
|
328 |
-
decode_upscale=2,
|
329 |
-
config=config,
|
330 |
-
N=N,
|
331 |
-
c_mult=c_mult,
|
332 |
-
depth_encoding=depth_encoding,
|
333 |
-
relu_in_encoding=relu_in_encoding,
|
334 |
-
skip_in_encoding=skip_in_encoding,
|
335 |
-
)
|
336 |
-
self.m_up1 = BaseEncBlock(
|
337 |
-
nc[0],
|
338 |
-
nc[0],
|
339 |
-
bias=False,
|
340 |
-
mode="CRC",
|
341 |
-
nb=nb,
|
342 |
-
embedding=embedding,
|
343 |
-
emb_channels=emb_channels,
|
344 |
-
emb_physics=emb_physics,
|
345 |
-
img_channels=in_channels,
|
346 |
-
decode_upscale=1,
|
347 |
-
config=config,
|
348 |
-
N=N,
|
349 |
-
c_mult=c_mult,
|
350 |
-
depth_encoding=depth_encoding,
|
351 |
-
relu_in_encoding=relu_in_encoding,
|
352 |
-
skip_in_encoding=skip_in_encoding,
|
353 |
-
)
|
354 |
-
|
355 |
-
else:
|
356 |
-
raise NotImplementedError("conv_type should be 'base' or 'next'")
|
357 |
-
|
358 |
-
if pool_type == "next_max":
|
359 |
-
self.pool1 = EquivMaxPool(
|
360 |
-
antialias=antialias,
|
361 |
-
in_channels=nc[0],
|
362 |
-
out_channels=nc[1],
|
363 |
-
device=device,
|
364 |
-
)
|
365 |
-
self.pool2 = EquivMaxPool(
|
366 |
-
antialias=antialias,
|
367 |
-
in_channels=nc[1],
|
368 |
-
out_channels=nc[2],
|
369 |
-
device=device,
|
370 |
-
)
|
371 |
-
self.pool3 = EquivMaxPool(
|
372 |
-
antialias=antialias,
|
373 |
-
in_channels=nc[2],
|
374 |
-
out_channels=nc[3],
|
375 |
-
device=device,
|
376 |
-
)
|
377 |
-
elif pool_type == "base":
|
378 |
-
self.pool1 = downsample_strideconv(nc[0], nc[1], bias=False, mode="2")
|
379 |
-
self.pool2 = downsample_strideconv(nc[1], nc[2], bias=False, mode="2")
|
380 |
-
self.pool3 = downsample_strideconv(nc[2], nc[3], bias=False, mode="2")
|
381 |
-
self.up3 = upsample_convtranspose(nc[3], nc[2], bias=False, mode="2")
|
382 |
-
self.up2 = upsample_convtranspose(nc[2], nc[1], bias=False, mode="2")
|
383 |
-
self.up1 = upsample_convtranspose(nc[1], nc[0], bias=False, mode="2")
|
384 |
-
else:
|
385 |
-
raise NotImplementedError("pool_type should be 'base' or 'next'")
|
386 |
-
|
387 |
-
self.m_tail = OutTail(nc[0], in_channels)
|
388 |
-
|
389 |
-
if conv_type == "base":
|
390 |
-
init_func = functools.partial(
|
391 |
-
weights_init_unext, init_type="ortho", gain_conv=0.2
|
392 |
-
)
|
393 |
-
self.apply(init_func)
|
394 |
-
else:
|
395 |
-
init_func = functools.partial(
|
396 |
-
weights_init_unext,
|
397 |
-
init_type=init_type,
|
398 |
-
gain_conv=gain_init_conv,
|
399 |
-
gain_linear=gain_init_linear,
|
400 |
-
)
|
401 |
-
self.apply(init_func)
|
402 |
-
|
403 |
-
if pretrained_pth=='jz':
|
404 |
-
pth = '/lustre/fswork/projects/rech/nyd/commun/mterris/base_checkpoints/drunet_deepinv_color_finetune_22k.pth'
|
405 |
-
self.load_drunet_weights(pth)
|
406 |
-
elif pretrained_pth is not None:
|
407 |
-
self.load_drunet_weights(pretrained_pth)
|
408 |
-
|
409 |
-
if self.config == 'D':
|
410 |
-
# deactivate grad for layers that do not contain the string "PhysicsBlock" or "gain" or "fact_realign"
|
411 |
-
for name, param in self.named_parameters():
|
412 |
-
if 'PhysicsBlock' not in name and 'gain' not in name and 'fact_realign' not in name and "m_head" not in name and "m_tail" not in name:
|
413 |
-
param.requires_grad = False
|
414 |
-
|
415 |
-
if device is not None:
|
416 |
-
self.to(device)
|
417 |
-
|
418 |
-
def load_drunet_weights(self, ckpt_pth):
|
419 |
-
state_dict = torch.load(ckpt_pth, map_location=lambda storage, loc: storage)
|
420 |
-
|
421 |
-
new_state_dict = {}
|
422 |
-
matched_keys = [] # List to store successfully matched keys
|
423 |
-
unmatched_keys = [] # List to store keys that were not matched or excluded
|
424 |
-
excluded_keys = [] # List to store excluded keys
|
425 |
-
|
426 |
-
# Define patterns to exclude
|
427 |
-
exclude_patterns = ["head", "tail"]
|
428 |
-
|
429 |
-
# Dealing with regular keys
|
430 |
-
for old_key, value in state_dict.items():
|
431 |
-
# Skip keys containing any of the excluded patterns
|
432 |
-
if any(excluded in old_key for excluded in exclude_patterns):
|
433 |
-
excluded_keys.append(old_key)
|
434 |
-
continue # Skip further processing for this key
|
435 |
-
|
436 |
-
new_key = old2new(old_key)
|
437 |
-
|
438 |
-
if new_key is not None:
|
439 |
-
matched_keys.append((old_key, new_key)) # Record the matched keys
|
440 |
-
new_state_dict[new_key] = value
|
441 |
-
else:
|
442 |
-
unmatched_keys.append(old_key) # Record unmatched keys
|
443 |
-
|
444 |
-
# TODO: clean this
|
445 |
-
for excluded_key in excluded_keys:
|
446 |
-
if isinstance(self.in_channels, list):
|
447 |
-
for i, in_channel in enumerate(self.in_channels):
|
448 |
-
# print('Dealing with conv ', i)
|
449 |
-
new_key = f"m_head.conv{i}.weight"
|
450 |
-
if 'head' in excluded_key:
|
451 |
-
new_key = f"m_head.conv{i}.weight"
|
452 |
-
# new_key = f"m_head.head.conv{i}.weight"
|
453 |
-
if 'tail' in excluded_key:
|
454 |
-
new_key = f"m_tail.conv{i}.weight"
|
455 |
-
# DEBUG print all keys of state dict:
|
456 |
-
# print(state_dict.keys())
|
457 |
-
# print(self.state_dict().keys())
|
458 |
-
conditioning = 'base'
|
459 |
-
# if self.config == 'E':
|
460 |
-
# conditioning = False
|
461 |
-
new_kv = update_keyvals_headtail(excluded_key,
|
462 |
-
state_dict[excluded_key],
|
463 |
-
init_value=self.state_dict()[new_key],
|
464 |
-
new_key_name=new_key,
|
465 |
-
conditioning=conditioning)
|
466 |
-
new_state_dict.update(new_kv)
|
467 |
-
# print(new_kv.keys())
|
468 |
-
else:
|
469 |
-
new_kv = update_keyvals_headtail(excluded_key, state_dict[excluded_key])
|
470 |
-
new_state_dict.update(new_kv)
|
471 |
-
|
472 |
-
# Display matched keys
|
473 |
-
print("Matched keys:")
|
474 |
-
for old_key, new_key in matched_keys:
|
475 |
-
print(f"{old_key} -> {new_key}")
|
476 |
-
|
477 |
-
# Load updated state dict into the model
|
478 |
-
self.load_state_dict(new_state_dict, strict=False)
|
479 |
-
|
480 |
-
# Display unmatched keys
|
481 |
-
print("\nUnmatched keys:")
|
482 |
-
for unmatched_key in unmatched_keys:
|
483 |
-
print(unmatched_key)
|
484 |
-
|
485 |
-
print("Weights loaded from ", ckpt_pth)
|
486 |
-
|
487 |
-
def constant2map(self, value, x):
|
488 |
-
if isinstance(value, torch.Tensor):
|
489 |
-
if value.ndim > 0:
|
490 |
-
value_map = value.view(x.size(0), 1, 1, 1)
|
491 |
-
value_map = value_map.expand(-1, 1, x.size(2), x.size(3))
|
492 |
-
else:
|
493 |
-
value_map = torch.ones(
|
494 |
-
(x.size(0), 1, x.size(2), x.size(3)), device=x.device
|
495 |
-
) * value[None, None, None, None].to(x.device)
|
496 |
-
else:
|
497 |
-
value_map = (
|
498 |
-
torch.ones((x.size(0), 1, x.size(2), x.size(3)), device=x.device)
|
499 |
-
* value
|
500 |
-
)
|
501 |
-
return value_map
|
502 |
-
|
503 |
-
def base_conditioning(self, x, sigma, gamma):
|
504 |
-
noise_level_map = self.constant2map(sigma, x)
|
505 |
-
gamma_map = self.constant2map(gamma, x)
|
506 |
-
return torch.cat((x, noise_level_map, gamma_map), 1)
|
507 |
-
|
508 |
-
def realign_input(self, x, physics, y):
|
509 |
-
|
510 |
-
if hasattr(physics, "factor"):
|
511 |
-
f = physics.factor
|
512 |
-
elif hasattr(physics, "base") and hasattr(physics.base, "factor"):
|
513 |
-
f = physics.base.factor
|
514 |
-
elif hasattr(physics, "base") and hasattr(physics.base, "base") and hasattr(physics.base.base, "factor"):
|
515 |
-
f = physics.base.base.factor
|
516 |
-
else:
|
517 |
-
f = 1.0
|
518 |
-
|
519 |
-
sigma = 1e-6 # default value
|
520 |
-
if hasattr(physics.noise_model, 'sigma'):
|
521 |
-
sigma = physics.noise_model.sigma
|
522 |
-
if hasattr(physics, 'base') and hasattr(physics.base, 'noise_model') and hasattr(physics.base.noise_model, 'sigma'):
|
523 |
-
sigma = physics.base.noise_model.sigma
|
524 |
-
if hasattr(physics, 'base') and hasattr(physics.base, 'base') and hasattr(physics.base.base, 'noise_model') and hasattr(physics.base.base.noise_model, 'sigma'):
|
525 |
-
sigma = physics.base.base.noise_model.sigma
|
526 |
-
|
527 |
-
if isinstance(y, TensorList):
|
528 |
-
num = (y[0].reshape(y[0].shape[0], -1).abs().mean(1))
|
529 |
-
else:
|
530 |
-
num = (y.reshape(y.shape[0], -1).abs().mean(1))
|
531 |
-
|
532 |
-
snr = num / (sigma + 1e-4) # SNR equivariant
|
533 |
-
gamma = 1 / (1e-4 + 1 / (snr * f **2 )) # TODO: check square-root / mean / check if we need to add a factor in front ?
|
534 |
-
gamma = gamma[(...,) + (None,) * (x.dim() - 1)]
|
535 |
-
model_input = physics.prox_l2(x, y, gamma=gamma * self.fact_realign)
|
536 |
-
|
537 |
-
return model_input
|
538 |
-
|
539 |
-
def forward_unet(self, x0, sigma=None, gamma=None, physics=None, t=None, y=None, img_channels=None):
|
540 |
-
|
541 |
-
# list_values = []
|
542 |
-
|
543 |
-
if self.cond_type == "base":
|
544 |
-
# if self.config != 'E':
|
545 |
-
x0 = self.base_conditioning(x0, sigma, gamma)
|
546 |
-
emb_sigma = None
|
547 |
-
else:
|
548 |
-
emb_sigma = self.noise_embedding(
|
549 |
-
sigma
|
550 |
-
) # This only if the embedding is the non-basic one from drunet
|
551 |
-
|
552 |
-
emb_timestep = self.timestep_embedding(t)
|
553 |
-
|
554 |
-
x1 = self.m_head(x0) # old
|
555 |
-
# x1 = self.m_head(x0, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels)
|
556 |
-
# list_values.append(x1.abs().mean())
|
557 |
-
|
558 |
-
if self.config == 'G':
|
559 |
-
x1_, emb1_ = self.m_down1(x1, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels)
|
560 |
-
else:
|
561 |
-
x1_ = self.m_down1(x1, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=0)
|
562 |
-
x2 = self.pool1(x1_)
|
563 |
-
# list_values.append(x2.abs().mean())
|
564 |
-
|
565 |
-
if self.config == 'G':
|
566 |
-
x3_, emb3_ = self.m_down2(x2, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels)
|
567 |
-
else:
|
568 |
-
x3_ = self.m_down2(x2, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=1)
|
569 |
-
x3 = self.pool2(x3_)
|
570 |
-
|
571 |
-
# list_values.append(x3.abs().mean())
|
572 |
-
if self.config == 'G':
|
573 |
-
x4_, emb4_ = self.m_down3(x3, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels)
|
574 |
-
else:
|
575 |
-
x4_ = self.m_down3(x3, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=2)
|
576 |
-
x4 = self.pool3(x4_)
|
577 |
-
|
578 |
-
# issue: https://github.com/matthieutrs/ram_project/issues/1
|
579 |
-
# solution 1: using .contiguous() below
|
580 |
-
# solution 2: using a print statement that magically solves the issue
|
581 |
-
###print(x4.is_contiguous())
|
582 |
-
|
583 |
-
# list_values.append(x4.abs().mean())
|
584 |
-
if self.config == 'G':
|
585 |
-
x, _ = self.m_body(x4, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels)
|
586 |
-
else:
|
587 |
-
x = self.m_body(x4, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=3)
|
588 |
-
|
589 |
-
# list_values.append(x.abs().mean())
|
590 |
-
if self.pool_type == "next" or self.pool_type == "next_max":
|
591 |
-
x = self.pool3.upscale(x + x4)
|
592 |
-
else:
|
593 |
-
x = self.up3(x + x4)
|
594 |
-
|
595 |
-
if self.config == 'G':
|
596 |
-
x, _ = self.m_up3(x, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, emb_in=emb4_, img_channels=img_channels)
|
597 |
-
else:
|
598 |
-
x = self.m_up3(x, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=2)
|
599 |
-
|
600 |
-
# list_values.append(x.abs().mean())
|
601 |
-
if self.pool_type == "next" or self.pool_type == "next_max":
|
602 |
-
x = self.pool2.upscale(x + x3)
|
603 |
-
else:
|
604 |
-
x = self.up2(x + x3)
|
605 |
-
|
606 |
-
if self.config == 'G':
|
607 |
-
x, _ = self.m_up2(x, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, emb_in=emb3_, img_channels=img_channels)
|
608 |
-
else:
|
609 |
-
x = self.m_up2(x, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=1)
|
610 |
-
|
611 |
-
# list_values.append(x.abs().mean())
|
612 |
-
if self.pool_type == "next" or self.pool_type == "next_max":
|
613 |
-
x = self.pool1.upscale(x + x2)
|
614 |
-
else:
|
615 |
-
x = self.up1(x + x2)
|
616 |
-
|
617 |
-
if self.config == 'G':
|
618 |
-
x, _ = self.m_up1(x, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, emb_in=emb1_, img_channels=img_channels)
|
619 |
-
else:
|
620 |
-
x = self.m_up1(x, emb_sigma=emb_sigma, physics=physics, t=emb_timestep, y=y, img_channels=img_channels, scale=0)
|
621 |
-
|
622 |
-
# list_values.append(x.abs().mean())
|
623 |
-
if self.separate_head:
|
624 |
-
x = self.m_tail(x + x1, img_channels)
|
625 |
-
else:
|
626 |
-
x = self.m_tail(x + x1)
|
627 |
-
|
628 |
-
return x
|
629 |
-
|
630 |
-
def forward(self, x, sigma=None, gamma=None, physics=None, t=None, y=None):
|
631 |
-
r"""
|
632 |
-
Run the denoiser on image with noise level :math:`\sigma`.
|
633 |
-
|
634 |
-
:param torch.Tensor x: noisy image
|
635 |
-
:param float, torch.Tensor sigma: noise level. If ``sigma`` is a float, it is used for all images in the batch.
|
636 |
-
If ``sigma`` is a tensor, it must be of shape ``(batch_size,)``.
|
637 |
-
"""
|
638 |
-
img_channels = x.shape[1] # x_n_chan = x.shape[1]
|
639 |
-
if self.emb_physics:
|
640 |
-
physics = MultiScaleLinearPhysics(physics, x.shape[-3:], device=x.device)
|
641 |
-
|
642 |
-
if self.separate_head and img_channels not in self.in_channels:
|
643 |
-
raise ValueError(f"Input image has {img_channels} channels, but the network only have heads for {self.in_channels} channels.")
|
644 |
-
|
645 |
-
if y is not None:
|
646 |
-
x = self.realign_input(x, physics, y)
|
647 |
-
|
648 |
-
x = self.forward_unet(x, sigma=sigma, gamma=gamma, physics=physics, t=t, y=y, img_channels=img_channels)
|
649 |
-
|
650 |
-
return x
|
651 |
-
|
652 |
-
|
653 |
-
def krylov_embeddings_old(y, p, factor, v=None, N=4, feat_size=1, x_init=None, img_channels=3):
|
654 |
-
|
655 |
-
if x_init is None:
|
656 |
-
x = p.A_adjoint(y)
|
657 |
-
else:
|
658 |
-
x = x_init[:, :img_channels, ...]
|
659 |
-
|
660 |
-
if feat_size > 1:
|
661 |
-
_, C, _, _ = x.shape
|
662 |
-
if v is None:
|
663 |
-
v = torch.zeros_like(x).repeat(1, N-1, 1, 1)
|
664 |
-
out = x - v[:, :C, ...]
|
665 |
-
norm = factor ** 2
|
666 |
-
A = lambda u: p.A_adjoint(p.A(u)) * norm
|
667 |
-
for i in range(N-1):
|
668 |
-
x = A(x) - v[:, (i+1) * C:(i+2) * C, ...]
|
669 |
-
out = torch.cat([out, x], dim=1)
|
670 |
-
else:
|
671 |
-
if v is None:
|
672 |
-
v = torch.zeros_like(x)
|
673 |
-
out = x - v
|
674 |
-
norm = factor ** 2
|
675 |
-
A = lambda u: p.A_adjoint(p.A(u)) * norm
|
676 |
-
for i in range(N-1):
|
677 |
-
x = A(x) - v
|
678 |
-
out = torch.cat([out, x], dim=1)
|
679 |
-
return out
|
680 |
-
|
681 |
-
def krylov_embeddings(y, p, factor, v=None, N=4, x_init=None, img_channels=3):
|
682 |
-
"""
|
683 |
-
Efficient Krylov subspace embedding computation with parallel processing.
|
684 |
-
|
685 |
-
Args:
|
686 |
-
y (torch.Tensor): The input tensor.
|
687 |
-
p: An object with A and A_adjoint methods (linear operator).
|
688 |
-
factor (float): Scaling factor.
|
689 |
-
v (torch.Tensor, optional): Precomputed values to subtract from Krylov sequence. Defaults to None.
|
690 |
-
N (int, optional): Number of Krylov iterations. Defaults to 4.
|
691 |
-
feat_size (int, optional): Feature expansion size. Defaults to 1.
|
692 |
-
x_init (torch.Tensor, optional): Initial guess. Defaults to None.
|
693 |
-
img_channels (int, optional): Number of image channels. Defaults to 3.
|
694 |
-
|
695 |
-
Returns:
|
696 |
-
torch.Tensor: The Krylov embeddings.
|
697 |
-
"""
|
698 |
-
|
699 |
-
if x_init is None:
|
700 |
-
x = p.A_adjoint(y)
|
701 |
-
else:
|
702 |
-
x = x_init.clone() # Extract the first img_channels
|
703 |
-
|
704 |
-
norm = factor ** 2 # Precompute normalization factor
|
705 |
-
AtA = lambda u: p.A_adjoint(p.A(u)) * norm # Define the linear operator
|
706 |
-
|
707 |
-
v = v if v is not None else torch.zeros_like(x)
|
708 |
-
|
709 |
-
out = x.clone()
|
710 |
-
# Compute Krylov basis
|
711 |
-
x_k = x.clone()
|
712 |
-
for i in range(N-1):
|
713 |
-
x_k = AtA(x_k) - v
|
714 |
-
out = torch.cat([out, x_k], dim=1)
|
715 |
-
|
716 |
-
return out
|
717 |
-
|
718 |
-
|
719 |
-
def grad_embeddings(y, p, factor, v=None, N=4, feat_size=1):
|
720 |
-
Aty = p.A_adjoint(y)
|
721 |
-
if feat_size > 1:
|
722 |
-
_, C, _, _ = Aty.shape
|
723 |
-
if v is None:
|
724 |
-
v = torch.zeros_like(Aty).repeat(1, N-1, 1, 1)
|
725 |
-
out = v[:, :C, ...] - Aty
|
726 |
-
norm = factor ** 2
|
727 |
-
A = lambda u: p.A_adjoint(p.A(u)) * norm
|
728 |
-
for i in range(N-1):
|
729 |
-
x = A(v[:, (i+1) * C:(i+2) * C, ...]) - Aty
|
730 |
-
out = torch.cat([out, x], dim=1)
|
731 |
-
else:
|
732 |
-
if v is None:
|
733 |
-
v = torch.zeros_like(Aty)
|
734 |
-
out = v - Aty
|
735 |
-
norm = factor ** 2
|
736 |
-
A = lambda u: p.A_adjoint(p.A(u)) * norm
|
737 |
-
for i in range(N-1):
|
738 |
-
x = A(v) - Aty
|
739 |
-
out = torch.cat([out, x], dim=1)
|
740 |
-
return out
|
741 |
-
|
742 |
-
|
743 |
-
def prox_embeddings(y, p, factor, v=None, N=4):
|
744 |
-
x = p.A_adjoint(y)
|
745 |
-
B, C, H, W = x.shape
|
746 |
-
|
747 |
-
if v is None:
|
748 |
-
v = torch.zeros_like(x)
|
749 |
-
|
750 |
-
v = v.repeat(1, N - 1, 1, 1)
|
751 |
-
|
752 |
-
gamma = torch.logspace(-4, -1, N-1, device=x.device).repeat_interleave(C).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
753 |
-
norm = factor ** 2
|
754 |
-
A_sub = lambda u: torch.cat([p.A_adjoint(p.A(u[:, i * C:(i+1) * C, ...])) * norm for i in range(N-1)], dim=1)
|
755 |
-
A = lambda u: A_sub(u) + (u - v) * gamma
|
756 |
-
|
757 |
-
u_hat = conjugate_gradient(A, x.repeat(1, N-1, 1, 1), max_iter=3, tol=1e-3)
|
758 |
-
u_hat = torch.cat([u_hat, x], dim=1)
|
759 |
-
|
760 |
-
return u_hat
|
761 |
-
|
762 |
-
# --------------------------------------------
|
763 |
-
# Res Block: x + conv(relu(conv(x)))
|
764 |
-
# --------------------------------------------
|
765 |
-
class MeasCondBlock(nn.Module):
|
766 |
-
def __init__(
|
767 |
-
self,
|
768 |
-
out_channels=64,
|
769 |
-
img_channels=None,
|
770 |
-
decode_upscale=None,
|
771 |
-
config = 'A',
|
772 |
-
N=4,
|
773 |
-
depth_encoding=1,
|
774 |
-
relu_in_encoding=False,
|
775 |
-
skip_in_encoding=True,
|
776 |
-
c_mult=1,
|
777 |
-
):
|
778 |
-
super(MeasCondBlock, self).__init__()
|
779 |
-
|
780 |
-
self.separate_head = isinstance(img_channels, list)
|
781 |
-
self.config = config
|
782 |
-
|
783 |
-
assert img_channels is not None, "decode_dimensions should be provided"
|
784 |
-
assert decode_upscale is not None, "decode_upscale should be provided"
|
785 |
-
|
786 |
-
# if self.separate_head:
|
787 |
-
if self.config == 'A':
|
788 |
-
self.relu_encoding = nn.ReLU(inplace=False)
|
789 |
-
self.N = N
|
790 |
-
self.c_mult = c_mult
|
791 |
-
self.encoding_conv = Heads(img_channels, out_channels, depth=depth_encoding, scale=1, bias=False, c_mult=self.c_mult, relu_in=relu_in_encoding, skip_in=skip_in_encoding)
|
792 |
-
if self.config == 'B':
|
793 |
-
self.N = N
|
794 |
-
self.c_mult = c_mult
|
795 |
-
self.relu_encoding = nn.ReLU(inplace=False)
|
796 |
-
self.decoding_conv = Tails(out_channels, img_channels, depth=1, scale=1, bias=False, c_mult=self.c_mult)
|
797 |
-
self.encoding_conv = Heads(img_channels, out_channels, depth=depth_encoding, scale=1, bias=False, c_mult=self.c_mult, relu_in=relu_in_encoding, skip_in=skip_in_encoding)
|
798 |
-
if self.config == 'C':
|
799 |
-
self.N = N
|
800 |
-
self.c_mult = c_mult
|
801 |
-
self.relu_encoding = nn.ReLU(inplace=False)
|
802 |
-
self.decoding_conv = Tails(out_channels, img_channels, depth=1, scale=1, bias=False, c_mult=self.c_mult)
|
803 |
-
self.encoding_conv = Heads(img_channels, out_channels, depth=depth_encoding, scale=1, bias=False, c_mult=self.c_mult*N, c_add=N, relu_in=relu_in_encoding, skip_in=skip_in_encoding)
|
804 |
-
elif self.config == 'D':
|
805 |
-
self.N = N
|
806 |
-
self.c_mult = c_mult
|
807 |
-
self.relu_encoding = nn.ReLU(inplace=False)
|
808 |
-
self.decoding_conv = Tails(out_channels, img_channels, depth=1, scale=1, bias=False, c_mult=self.c_mult)
|
809 |
-
self.encoding_conv = Heads(img_channels, out_channels, depth=depth_encoding, scale=1, bias=False, c_mult=self.c_mult*N, c_add=N, relu_in=relu_in_encoding, skip_in=skip_in_encoding)
|
810 |
-
|
811 |
-
self.gain = torch.nn.Parameter(torch.tensor([1.0]), requires_grad=True)
|
812 |
-
self.gain_gradx = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
|
813 |
-
self.gain_grady = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
|
814 |
-
self.gain_pinvx = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
|
815 |
-
self.gain_pinvy = torch.nn.Parameter(torch.tensor([1e-2]), requires_grad=True)
|
816 |
-
|
817 |
-
def forward(self, x, y, physics, t, emb_in=None, img_channels=None, scale=1):
|
818 |
-
if self.config == 'A':
|
819 |
-
return self.measurement_conditioning_config_A(x, y, physics, img_channels=img_channels, scale=scale)
|
820 |
-
elif self.config == 'F':
|
821 |
-
return self.measurement_conditioning_config_F(x, y, physics, img_channels=img_channels, scale=scale)
|
822 |
-
elif self.config == 'B':
|
823 |
-
return self.measurement_conditioning_config_B(x, y, physics, img_channels=img_channels, scale=scale)
|
824 |
-
elif self.config == 'C':
|
825 |
-
return self.measurement_conditioning_config_C(x, y, physics, img_channels=img_channels, scale=scale)
|
826 |
-
elif self.config == 'D':
|
827 |
-
return self.measurement_conditioning_config_D(x, y, physics, img_channels=img_channels, scale=scale)
|
828 |
-
elif self.config == 'E':
|
829 |
-
return self.measurement_conditioning_config_E(x, y, physics, img_channels=img_channels, scale=scale)
|
830 |
-
else:
|
831 |
-
raise NotImplementedError('Config not implemented')
|
832 |
-
|
833 |
-
def measurement_conditioning_config_A(self, x, y, physics, img_channels, scale=0):
|
834 |
-
physics.set_scale(scale)
|
835 |
-
factor = 2**(scale)
|
836 |
-
meas = krylov_embeddings(y, physics, factor, N=self.N, img_channels=img_channels)
|
837 |
-
cond = self.encoding_conv(meas)
|
838 |
-
emb = self.relu_encoding(cond)
|
839 |
-
return emb
|
840 |
-
|
841 |
-
def measurement_conditioning_config_B(self, x, y, physics, img_channels, scale=0):
|
842 |
-
physics.set_scale(scale)
|
843 |
-
dec = self.decoding_conv(x, img_channels)
|
844 |
-
factor = 2**(scale)
|
845 |
-
meas = krylov_embeddings(y, physics, factor, v=dec, N=self.N, img_channels=img_channels)
|
846 |
-
cond = self.encoding_conv(meas)
|
847 |
-
emb = self.relu_encoding(cond)
|
848 |
-
return emb # * sigma_emb
|
849 |
-
|
850 |
-
def measurement_conditioning_config_C(self, x, y, physics, img_channels, scale=0):
|
851 |
-
physics.set_scale(scale)
|
852 |
-
dec = self.decoding_conv(x, img_channels)
|
853 |
-
factor = 2**(scale)
|
854 |
-
meas_y = krylov_embeddings(y, physics, factor, N=self.N, img_channels=img_channels)
|
855 |
-
meas_dec = krylov_embeddings(y, physics, factor, N=self.N, x_init=dec[:, :img_channels, ...], img_channels=img_channels)
|
856 |
-
for c in range(1, self.c_mult):
|
857 |
-
meas_cur = krylov_embeddings(y, physics, factor, N=self.N, x_init=dec[:, img_channels*c:img_channels*(c+1)],
|
858 |
-
img_channels=img_channels)
|
859 |
-
meas_dec = torch.cat([meas_dec, meas_cur], dim=1)
|
860 |
-
meas = torch.cat([meas_y, meas_dec], dim=1)
|
861 |
-
cond = self.encoding_conv(meas)
|
862 |
-
emb = self.relu_encoding(cond)
|
863 |
-
return emb
|
864 |
-
|
865 |
-
def measurement_conditioning_config_D(self, x, y, physics, img_channels, scale=0):
|
866 |
-
physics.set_scale(scale)
|
867 |
-
dec = self.decoding_conv(x, img_channels)
|
868 |
-
factor = 2**(scale)
|
869 |
-
meas_y = krylov_embeddings(y, physics, factor, N=self.N, img_channels=img_channels)
|
870 |
-
meas_dec = krylov_embeddings(y, physics, factor, N=self.N, x_init=dec[:, :img_channels, ...], img_channels=img_channels)
|
871 |
-
for c in range(1, self.c_mult):
|
872 |
-
meas_cur = krylov_embeddings(y, physics, factor, N=self.N, x_init=dec[:, img_channels*c:img_channels*(c+1)],
|
873 |
-
img_channels=img_channels)
|
874 |
-
meas_dec = torch.cat([meas_dec, meas_cur], dim=1)
|
875 |
-
meas = torch.cat([meas_y, meas_dec], dim=1)
|
876 |
-
cond = self.encoding_conv(meas)
|
877 |
-
emb = self.relu_encoding(cond)
|
878 |
-
return cond
|
879 |
-
|
880 |
-
def measurement_conditioning_config_F(self, x, y, physics, img_channels):
|
881 |
-
dec_large = self.decoding_conv(x, img_channels) # go from shape = (B, C, H, W) to (B, 64, 64, 64) (independent of modality)
|
882 |
-
dec = self.relu_decoding(dec_large)
|
883 |
-
|
884 |
-
Adec = physics.A(dec)
|
885 |
-
|
886 |
-
grad = physics.A_adjoint(self.gain_gradx ** 2 * Adec - self.gain_grady ** 2 * y) # TODO: check if we need to have L2 (depending on noise nature, can be automated)
|
887 |
-
|
888 |
-
if 'tomography' in physics.__class__.__name__.lower(): # or 'pansharp' in physics.__class__.__name__.lower():
|
889 |
-
pinv = physics.prox_l2(dec, self.gain_pinvx ** 2 * Adec - self.gain_pinvy ** 2 * y, gamma=1e9)
|
890 |
-
else:
|
891 |
-
pinv = physics.A_dagger(self.gain_pinvx ** 2 * Adec - self.gain_pinvy ** 2 * y) # TODO: do we set this to gain_gradx ? To get 0 during training too?? Better for denoising I guess
|
892 |
-
|
893 |
-
# Mix grad and pinv
|
894 |
-
emb = grad - pinv # will be 0 in the case of denoising, but also inpainting
|
895 |
-
im_emb = dec - physics.A_adjoint_A(dec) # will be 0 in the case of denoising, but not inpainting # TODO: add gains here too
|
896 |
-
grad_large = emb + im_emb
|
897 |
-
|
898 |
-
emb_grad = self.encoding_conv(grad_large)
|
899 |
-
emb_grad = self.relu_encoding(emb_grad)
|
900 |
-
return emb_grad
|
901 |
-
|
902 |
-
def measurement_conditioning_config_E(self, x, y, physics, img_channels, scale=1):
|
903 |
-
dec = self.decoding_conv(x, img_channels) # go from shape = (B, C, H, W) to (B, 64, 64, 64) (independent of modality)
|
904 |
-
|
905 |
-
physics.set_scale(scale)
|
906 |
-
|
907 |
-
# TODO: check things are batched
|
908 |
-
f = physics.factor if hasattr(physics, "factor") else 1.0
|
909 |
-
err = (physics.A_adjoint(physics.A(dec) - y))
|
910 |
-
# snr = self.snr_module(err)
|
911 |
-
snr = dec.reshape(dec.shape[0], -1).abs().mean(dim=1) / (err.reshape(err.shape[0], -1).abs().mean(dim=1) + 1e-4)
|
912 |
-
|
913 |
-
gamma = 1 / (1e-4 + 1 / (snr * f ** 2 + 1)) # TODO: check square-root / mean / check if we need to add a factor in front
|
914 |
-
gamma_est = gamma[(...,) + (None,) * (dec.dim() - 1)]
|
915 |
-
|
916 |
-
prox = physics.prox_l2(dec, y, gamma=gamma_est * self.fact_prox)
|
917 |
-
emb = self.fact_prox_skip_1 * prox + self.fact_prox_skip_2 * dec
|
918 |
-
|
919 |
-
emb_grad = self.encoding_conv(emb)
|
920 |
-
emb_grad = self.relu_encoding(emb_grad)
|
921 |
-
return emb_grad
|
922 |
-
|
923 |
-
|
924 |
-
class ResBlock(nn.Module):
|
925 |
-
def __init__(
|
926 |
-
self,
|
927 |
-
in_channels=64,
|
928 |
-
out_channels=64,
|
929 |
-
kernel_size=3,
|
930 |
-
stride=1,
|
931 |
-
padding=1,
|
932 |
-
bias=True,
|
933 |
-
mode="CRC",
|
934 |
-
negative_slope=0.2,
|
935 |
-
embedding=False,
|
936 |
-
emb_channels=None,
|
937 |
-
emb_physics=False,
|
938 |
-
img_channels=None,
|
939 |
-
decode_upscale=None,
|
940 |
-
config = 'A',
|
941 |
-
head=False,
|
942 |
-
tail=False,
|
943 |
-
N=4,
|
944 |
-
c_mult=1,
|
945 |
-
depth_encoding=1,
|
946 |
-
relu_in_encoding=False,
|
947 |
-
skip_in_encoding=True,
|
948 |
-
):
|
949 |
-
super(ResBlock, self).__init__()
|
950 |
-
|
951 |
-
if not head and not tail:
|
952 |
-
assert in_channels == out_channels, "Only support in_channels==out_channels."
|
953 |
-
self.separate_head = isinstance(img_channels, list)
|
954 |
-
self.config = config
|
955 |
-
self.is_head = head
|
956 |
-
self.is_tail = tail
|
957 |
-
|
958 |
-
if self.is_head:
|
959 |
-
self.head = InHead(img_channels, out_channels, input_layer=True)
|
960 |
-
|
961 |
-
# if self.is_tail:
|
962 |
-
# self.tail = OutTail(in_channels, out_channels)
|
963 |
-
|
964 |
-
if not self.is_head and not self.is_tail:
|
965 |
-
self.conv1 = conv(
|
966 |
-
in_channels,
|
967 |
-
out_channels,
|
968 |
-
kernel_size,
|
969 |
-
stride,
|
970 |
-
padding,
|
971 |
-
bias,
|
972 |
-
"C",
|
973 |
-
negative_slope,
|
974 |
-
)
|
975 |
-
self.nl = nn.ReLU(inplace=True)
|
976 |
-
self.conv2 = conv(
|
977 |
-
out_channels,
|
978 |
-
out_channels,
|
979 |
-
kernel_size,
|
980 |
-
stride,
|
981 |
-
padding,
|
982 |
-
bias,
|
983 |
-
"C",
|
984 |
-
negative_slope,
|
985 |
-
)
|
986 |
-
|
987 |
-
if embedding:
|
988 |
-
self.gain = torch.nn.Parameter(torch.tensor([1.0]), requires_grad=True)
|
989 |
-
self.emb_linear = MPConv(emb_channels, out_channels, kernel=[])
|
990 |
-
|
991 |
-
self.emb_physics = emb_physics
|
992 |
-
|
993 |
-
if self.emb_physics:
|
994 |
-
self.gain = torch.nn.Parameter(torch.tensor([1.0]), requires_grad=True)
|
995 |
-
self.PhysicsBlock = MeasCondBlock(out_channels=out_channels, config=config, c_mult=c_mult,
|
996 |
-
img_channels=img_channels, decode_upscale=decode_upscale,
|
997 |
-
N=N, depth_encoding=depth_encoding,
|
998 |
-
relu_in_encoding=relu_in_encoding, skip_in_encoding=skip_in_encoding)
|
999 |
-
|
1000 |
-
def forward(self, x, emb_sigma=None, physics=None, t=None, y=None, emb_in=None, img_channels=None, scale=0):
|
1001 |
-
u = self.conv1(x)
|
1002 |
-
u = self.nl(u)
|
1003 |
-
u_2 = self.conv2(u) # Should we sum this with below?
|
1004 |
-
if self.emb_physics: # TODO: add a factor (1+gain) to the emb_meas? that depends on the input snr
|
1005 |
-
emb_grad = self.PhysicsBlock(u, y, physics, t, img_channels=img_channels, scale=scale)
|
1006 |
-
u_1 = self.gain * emb_grad # x - grad (sign does not matter)
|
1007 |
-
else:
|
1008 |
-
u_1 = 0
|
1009 |
-
return x + u_2 + u_1
|
1010 |
-
|
1011 |
-
|
1012 |
-
|
1013 |
-
|
1014 |
-
def calculate_fan_in_and_fan_out(tensor, pytorch_style: bool = True):
|
1015 |
-
"""
|
1016 |
-
from https://github.com/megvii-research/basecls/blob/main/basecls/layers/wrapper.py#L77
|
1017 |
-
"""
|
1018 |
-
if len(tensor.shape) not in (2, 4, 5):
|
1019 |
-
raise ValueError(
|
1020 |
-
"fan_in and fan_out can only be computed for tensor with 2/4/5 "
|
1021 |
-
"dimensions"
|
1022 |
-
)
|
1023 |
-
if len(tensor.shape) == 5:
|
1024 |
-
# `GOIKK` to `OIKK`
|
1025 |
-
tensor = tensor.reshape(-1, *tensor.shape[2:]) if pytorch_style else tensor[0]
|
1026 |
-
|
1027 |
-
num_input_fmaps = tensor.shape[1]
|
1028 |
-
num_output_fmaps = tensor.shape[0]
|
1029 |
-
receptive_field_size = 1
|
1030 |
-
if len(tensor.shape) > 2:
|
1031 |
-
receptive_field_size = functools.reduce(lambda x, y: x * y, tensor.shape[2:], 1)
|
1032 |
-
fan_in = num_input_fmaps * receptive_field_size
|
1033 |
-
fan_out = num_output_fmaps * receptive_field_size
|
1034 |
-
return fan_in, fan_out
|
1035 |
-
|
1036 |
-
|
1037 |
-
def weights_init_unext(m, gain_conv=1.0, gain_linear=1.0, init_type="ortho"):
|
1038 |
-
if hasattr(m, "modules"):
|
1039 |
-
for submodule in m.modules():
|
1040 |
-
if not 'skip' in str(submodule):
|
1041 |
-
if isinstance(submodule, nn.Conv2d) or isinstance(
|
1042 |
-
submodule, nn.ConvTranspose2d
|
1043 |
-
):
|
1044 |
-
# nn.init.orthogonal_(submodule.weight.data, gain=1.0)
|
1045 |
-
k_shape = submodule.weight.data.shape[-1]
|
1046 |
-
if k_shape < 4:
|
1047 |
-
nn.init.orthogonal_(submodule.weight.data, gain=0.2)
|
1048 |
-
else:
|
1049 |
-
_, fan_out = calculate_fan_in_and_fan_out(submodule.weight)
|
1050 |
-
std = math.sqrt(2 / fan_out)
|
1051 |
-
nn.init.normal_(submodule.weight, 0, std)
|
1052 |
-
# if init_type == 'ortho':
|
1053 |
-
# nn.init.orthogonal_(submodule.weight.data, gain=gain_conv)
|
1054 |
-
# elif init_type == 'kaiming':
|
1055 |
-
# nn.init.kaiming_normal_(submodule.weight.data, a=0, mode='fan_in')
|
1056 |
-
# elif init_type == 'xavier':
|
1057 |
-
# nn.init.xavier_normal_(submodule.weight.data, gain=gain_conv)
|
1058 |
-
elif isinstance(submodule, nn.Linear):
|
1059 |
-
nn.init.normal_(submodule.weight.data, std=0.01)
|
1060 |
-
elif 'skip' in str(submodule):
|
1061 |
-
if isinstance(submodule, nn.Conv2d) or isinstance(
|
1062 |
-
submodule, nn.ConvTranspose2d
|
1063 |
-
):
|
1064 |
-
nn.init.ones_(submodule.weight.data)
|
1065 |
-
# else:
|
1066 |
-
# classname = submodule.__class__.__name__
|
1067 |
-
# # print('WARNING: no init for ', classname)
|
1068 |
-
|
1069 |
-
def old2new(old_key):
|
1070 |
-
"""
|
1071 |
-
Converting old DRUNet keys to new UNExt style keys.
|
1072 |
-
|
1073 |
-
PATTERNS TO MATCH:
|
1074 |
-
1. Case of downsampling blocks:
|
1075 |
-
- for residual blocks (non-downsampling):
|
1076 |
-
m_down3.2.res.0.weight -> m_down3.enc.2.conv1.weight
|
1077 |
-
- for downsampling blocks:
|
1078 |
-
m_down3.4.weight -> m_down3.downsample_strideconv.weight
|
1079 |
-
2. Case of upsampling blocks:
|
1080 |
-
- for upsampling:
|
1081 |
-
m_up3.0.weight -> m_up3.upsample_convtranspose.weight
|
1082 |
-
- for residual blocks:
|
1083 |
-
m_up3.2.res.0.weight -> m_up3.enc.2.conv1.weight
|
1084 |
-
3. Case for body blocks:
|
1085 |
-
m_body.0.res.2.weight -> m_body.enc.0.conv2.weight
|
1086 |
-
|
1087 |
-
Args:
|
1088 |
-
old_key (str): The old key from the state dictionary.
|
1089 |
-
|
1090 |
-
Returns:
|
1091 |
-
str or None: The new key if matched, otherwise None.
|
1092 |
-
"""
|
1093 |
-
# Match keys with the pattern for residual blocks (downsampling)
|
1094 |
-
match_residual = re.search(r"(m_down\d+)\.(\d+)\.res\.(\d+)", old_key)
|
1095 |
-
if match_residual:
|
1096 |
-
prefix = match_residual.group(1) # e.g., "m_down2"
|
1097 |
-
index = match_residual.group(2) # e.g., "3"
|
1098 |
-
conv_index = int(match_residual.group(3)) # e.g., "0"
|
1099 |
-
|
1100 |
-
# Determine the new conv index: 0 -> 1, 2 -> 2
|
1101 |
-
new_conv_index = 1 if conv_index == 0 else 2
|
1102 |
-
# Construct the new key
|
1103 |
-
new_key = f"{prefix}.enc.{index}.conv{new_conv_index}.weight"
|
1104 |
-
return new_key
|
1105 |
-
|
1106 |
-
match_residual = re.search(r"(m_up\d+)\.(\d+)\.res\.(\d+)", old_key)
|
1107 |
-
if match_residual:
|
1108 |
-
prefix = match_residual.group(1) # e.g., "m_down2"
|
1109 |
-
index = int(match_residual.group(2)) # e.g., "3"
|
1110 |
-
conv_index = int(match_residual.group(3)) # e.g., "0"
|
1111 |
-
|
1112 |
-
# Determine the new conv index: 0 -> 1, 2 -> 2
|
1113 |
-
new_conv_index = 1 if conv_index == 0 else 2
|
1114 |
-
# Construct the new key
|
1115 |
-
new_key = f"{prefix}.enc.{index-1}.conv{new_conv_index}.weight"
|
1116 |
-
return new_key
|
1117 |
-
|
1118 |
-
match_pool_downsample = re.search(r"m_down(\d+)\.4\.weight", old_key)
|
1119 |
-
if match_pool_downsample:
|
1120 |
-
index = match_pool_downsample.group(1) # e.g., "1" or "2"
|
1121 |
-
# Construct the new key
|
1122 |
-
new_key = f"pool{index}.weight"
|
1123 |
-
return new_key
|
1124 |
-
|
1125 |
-
# Match keys for upsampling blocks
|
1126 |
-
match_upsample = re.search(r"m_up(\d+)\.0\.weight", old_key)
|
1127 |
-
if match_upsample:
|
1128 |
-
index = match_upsample.group(1) # e.g., "1" or "2"
|
1129 |
-
# Construct the new key
|
1130 |
-
new_key = f"up{index}.weight"
|
1131 |
-
return new_key
|
1132 |
-
|
1133 |
-
# Match keys for body blocks
|
1134 |
-
match_body = re.search(r"(m_body)\.(\d+)\.res\.(\d+)\.weight", old_key)
|
1135 |
-
if match_body:
|
1136 |
-
prefix = match_body.group(1) # e.g., "m_body"
|
1137 |
-
index = match_body.group(2) # e.g., "0"
|
1138 |
-
conv_index = int(match_body.group(3)) # e.g., "2"
|
1139 |
-
|
1140 |
-
new_convindex = 1 if conv_index == 0 else 2
|
1141 |
-
|
1142 |
-
# Construct the new key
|
1143 |
-
new_key = f"{prefix}.enc.{index}.conv{new_convindex}.weight"
|
1144 |
-
return new_key
|
1145 |
-
|
1146 |
-
# If no patterns match, return None
|
1147 |
-
return None
|
1148 |
-
|
1149 |
-
def update_keyvals_headtail(old_key, old_value, init_value=None, new_key_name='m_head.conv0.weight', conditioning='base'):
|
1150 |
-
"""
|
1151 |
-
Converting old DRUNet keys to new UNExt style keys.
|
1152 |
-
|
1153 |
-
KEYS do not change but weight need to be 0 padded.
|
1154 |
-
|
1155 |
-
Args:
|
1156 |
-
old_key (str): The old key from the state dictionary.
|
1157 |
-
"""
|
1158 |
-
if 'head' in old_key:
|
1159 |
-
if conditioning == 'base':
|
1160 |
-
c_in = init_value.shape[1]
|
1161 |
-
c_in_old = old_value.shape[1]
|
1162 |
-
# if c_in == c_in_old:
|
1163 |
-
# new_value = old_value.detach()
|
1164 |
-
# elif c_in < c_in_old:
|
1165 |
-
# new_value = torch.zeros_like(init_value.detach())
|
1166 |
-
# new_value[:, -1:, ...] = old_value[:, -1:, ...]
|
1167 |
-
# new_value[:, :c_in-1, ...] = old_value[:, :c_in-1, ...]
|
1168 |
-
# if c_in == c_in_old:
|
1169 |
-
# new_value = old_value.detach()
|
1170 |
-
# elif c_in < c_in_old:
|
1171 |
-
new_value = torch.zeros_like(init_value.detach())
|
1172 |
-
new_value[:, -2:-1, ...] = old_value[:, -1:, ...]
|
1173 |
-
new_value[:, -1:, ...] = old_value[:, -1:, ...]
|
1174 |
-
new_value[:, :c_in-2, ...] = old_value[:, :c_in-2, ...]
|
1175 |
-
return {new_key_name: new_value}
|
1176 |
-
else:
|
1177 |
-
c_in = init_value.shape[1]
|
1178 |
-
c_in_old = old_value.shape[1]
|
1179 |
-
# if c_in == c_in_old - 1:
|
1180 |
-
# new_value = old_value[:, :-1, ...].detach()
|
1181 |
-
# elif c_in < c_in_old - 1:
|
1182 |
-
# new_value = torch.zeros_like(init_value.detach())
|
1183 |
-
# new_value[:, -1:, ...] = old_value[:, -1:, ...]
|
1184 |
-
# new_value[:, ...] = old_value[:, :c_in, ...]
|
1185 |
-
new_value = torch.zeros_like(init_value.detach())
|
1186 |
-
new_value[:, -1:-2, ...] = old_value[:, -1:, ...]
|
1187 |
-
new_value[:, -1:, ...] = old_value[:, -1:, ...]
|
1188 |
-
new_value[:, ...] = old_value[:, :c_in, ...]
|
1189 |
-
return {new_key_name: new_value}
|
1190 |
-
elif 'tail' in old_key:
|
1191 |
-
c_in = init_value.shape[0]
|
1192 |
-
c_in_old = old_value.shape[0]
|
1193 |
-
new_value = torch.zeros_like(init_value.detach())
|
1194 |
-
if c_in == c_in_old:
|
1195 |
-
new_value = old_value.detach()
|
1196 |
-
elif c_in < c_in_old:
|
1197 |
-
new_value = torch.zeros_like(init_value.detach())
|
1198 |
-
new_value[:, ...] = old_value[:c_in, ...]
|
1199 |
-
return {new_key_name: new_value}
|
1200 |
-
else:
|
1201 |
-
print(f"Key {old_key} does not contain 'head' or 'tail'.")
|
1202 |
-
|
1203 |
-
|
1204 |
-
|
1205 |
-
# test the network
|
1206 |
-
if __name__ == "__main__":
|
1207 |
-
net = UNeXt()
|
1208 |
-
x = torch.randn(1, 3, 128, 128)
|
1209 |
-
y = net(x, 0.1)
|
1210 |
-
# print(y.shape)
|
1211 |
-
# print(y)
|
1212 |
-
|
1213 |
-
|
1214 |
-
# Case for diagonal physics
|
1215 |
-
# IDEA 1: kills signal in the image of A
|
1216 |
-
# im_emb = dec - physics.A_adjoint_A(dec) # will be 0 in the case of denoising, but not inpainting # TODO: add gains here too
|
1217 |
-
# IDEA 2: compute norm of signal in ker of A
|
1218 |
-
# normker = (dec - physics.A_adjoint_A(dec)).norm() / (dec.norm() + 1e-4)
|
1219 |
-
# im_emb = normker * physics.A_adjoint(self.gain_diag_x * physics.A(dec) - self.gain_diag_y * y) # will be 0 in the case of denoising, but not inpainting # TODO: add gains here too
|
1220 |
-
# IDEA 3: same as above but add the pinv as well
|
1221 |
-
# normker = (dec - physics.A_adjoint_A(dec)).norm() / (dec.norm() + 1e-4)
|
1222 |
-
# grad_term = physics.A_adjoint(self.gain_diag_x * physics.A(dec) - self.gain_diag_y * y)
|
1223 |
-
# # pinv_term = physics.A_dagger(self.gain_diagpinv_x * physics.A(dec) - self.gain_diagpinv_y * y)
|
1224 |
-
# if 'tomography' in physics.__class__.__name__.lower(): # or 'pansharp' in physics.__class__.__name__.lower():
|
1225 |
-
# pinv_term = physics.prox_l2(dec, self.gain_diagpinv_x ** 2 * Adec - self.gain_diagpinv_y ** 2 * y, gamma=1e9)
|
1226 |
-
# else:
|
1227 |
-
# pinv_term = physics.A_dagger(self.gain_diagpinv_x ** 2 * Adec - self.gain_diagpinv_y ** 2 * y) # TODO: do we set this to gain_gradx ? To get 0 during training too?? Better for denoising I guess
|
1228 |
-
# im_emb = normker * (grad_term + pinv_term) # will be 0 in the case of denoising, but not inpainting # TODO: add gains here too
|
1229 |
-
|
1230 |
-
# # Mix it
|
1231 |
-
# if hasattr(physics.noise_model, 'sigma'):
|
1232 |
-
# sigma = physics.noise_model.sigma # SNR ? x /= sigma ** 2
|
1233 |
-
# snr = (y.abs().mean()) / (sigma + 1e-4) # SNR equivariant # TODO: add epsilon
|
1234 |
-
# snr = snr[(...,) + (None,) * (im_emb.dim() - 1)]
|
1235 |
-
# else:
|
1236 |
-
# snr = 1e4
|
1237 |
-
#
|
1238 |
-
# grad_large = emb + self.gain_diag * (1 + self.gain_noise / snr) * im_emb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|