File size: 6,663 Bytes
6c8ba1a
 
1a6b68a
6c8ba1a
 
a17547d
6c8ba1a
 
 
 
a17547d
 
 
bbcb42f
f53dfa1
6c8ba1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f53dfa1
 
1b3ac66
 
 
 
 
 
 
 
 
 
 
 
 
 
dd178bc
1b3ac66
 
 
 
 
 
 
 
 
7437113
 
1b3ac66
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import re
from multiprocessing import cpu_count

from keras.src.saving import load_model
import pandas as pd
from keras.src.utils import set_random_seed
from numpy import int64
from pandarallel import pandarallel
from sklearn.preprocessing import RobustScaler
import gradio as gr


set_random_seed(65536)

pandarallel.initialize(use_memory_fs=True, nb_workers=cpu_count())
model = load_model('./sqid.keras')


def sql_tokenize(sql_query):
    sql_query = sql_query.replace('`', ' ').replace('%20', ' ').replace('=', ' = ').replace('((', ' (( ').replace(
        '))', ' )) ').replace('(', ' ( ').replace(')', ' ) ').replace('||', ' || ').replace(',', '').replace(
        '--', ' -- ').replace(':', ' : ').replace('%23', ' # ').replace('+', ' + ').replace('!=',
                                                                                            ' != ') \
        .replace('"', ' " ').replace('%26', ' and ').replace('$', ' $ ').replace('%28', ' ( ').replace('%2A', ' * ') \
        .replace('%7C', ' | ').replace('&', ' & ').replace(']', ' ] ').replace('[', ' [ ').replace(';',
                                                                                                   ' ; ').replace(
        '/*', ' /* ')
    sql_reserved = {'SELECT', 'FROM', 'WHERE', 'AND', 'OR', 'NOT', 'IN', 'LIKE', 'ORDER', 'BY', 'GROUP', 'HAVING',
                    'LIMIT', 'BETWEEN', 'IS', 'NULL', '%', 'LIKE', 'MIN', 'MAX', 'AS', 'UPPER', 'LOWER', 'TO_DATE',
                    '=', '>', '<', '>=', '<=', '!=', '<>', 'BETWEEN', 'LIKE', 'EXISTS', 'JOIN', 'UNION', 'ALL',
                    'ASC', 'DESC', '||', 'AVG', 'LIMIT', 'EXCEPT', 'INTERSECT', 'CASE', 'WHEN', 'THEN', 'IF',
                    'IF', 'ANY', 'CAST', 'CONVERT', 'COALESCE', 'NULLIF', 'INNER', 'OUTER', 'LEFT', 'RIGHT', 'FULL',
                    'CROSS', 'OVER', 'PARTITION', 'SUM', 'COUNT', 'WITH', 'INTERVAL', 'WINDOW', 'OVER',
                    'ROW_NUMBER', 'RANK',
                    'DENSE_RANK', 'NTILE', 'FIRST_VALUE', 'LAST_VALUE', 'LAG', 'LEAD', 'DISTINCT', 'COMMENT',
                    'INSERT',
                    'UPDATE', 'DELETED', 'MERGE', '*', 'generate_series', 'char', 'chr', 'substr', 'lpad',
                    'extract',
                    'year', 'month', 'day', 'timestamp', 'number', 'string', 'concat', 'INFORMATION_SCHEMA',
                    "SQLITE_MASTER", 'TABLES', 'COLUMNS', 'CUBE', 'ROLLUP', 'RECURSIVE', 'FILTER', 'EXCLUDE',
                    'AUTOINCREMENT', 'WITHOUT', 'ROWID', 'VIRTUAL', 'INDEXED', 'UNINDEXED', 'SERIAL',
                    'DO', 'RETURNING', 'ILIKE', 'ARRAY', 'ANYARRAY', 'JSONB', 'TSQUERY', 'SEQUENCE',
                    'SYNONYM', 'CONNECT', 'START', 'LEVEL', 'ROWNUM', 'NOCOPY', 'MINUS', 'AUTO_INCREMENT', 'BINARY',
                    'ENUM', 'REPLACE', 'SET', 'SHOW', 'DESCRIBE', 'USE', 'EXPLAIN', 'STORED', 'VIRTUAL', 'RLIKE',
                    'MD5', 'SLEEP', 'BENCHMARK', '@@VERSION', 'VERSION', '@VERSION', 'CONVERT', 'NVARCHAR', '#',
                    '##', 'INJECTX',
                    'DELAY', 'WAITFOR', 'RAND',
                    }

    tokens = sql_query.split()
    tokens = [re.sub(r"""[^*\w\s.=\-><_|()!"']""", '', token) for token in tokens]
    for i, token in enumerate(tokens):
        if token.strip().upper() in sql_reserved:
            continue
        if token.strip().isnumeric():
            tokens[i] = '#NUMBER#'
        elif re.match(r'^[a-zA-Z_.|][a-zA-Z0-9_.|]*$', token.strip()):
            tokens[i] = '#IDENTIFIER#'
        elif re.match(r'^[\d:]*$', token.strip()):
            tokens[i] = '#TIMESTAMP#'
        elif '%' in token.strip():
            tokens[i] = ' '.join(
                [j.strip() if j.strip() in ('%', "'", "'") else '#IDENTIFIER#' for j in token.strip().split('%')])
    return ' '.join(tokens)


def add_features(x):
    x['Query'] = x['Query'].copy().parallel_apply(lambda a: sql_tokenize(a))
    x['num_tables'] = x['Query'].str.lower().str.count(r'FROM\s+#IDENTIFIER#', flags=re.I)
    x['num_columns'] = x['Query'].str.lower().str.count(r'SELECT\s+#IDENTIFIER#', flags=re.I)
    x['num_literals'] = x['Query'].str.lower().str.count("'[^']*'", flags=re.I) + x['Query'].str.lower().str.count(
        '"[^"]"', flags=re.I)
    x['num_parentheses'] = x['Query'].str.lower().str.count("\\(", flags=re.I) + x['Query'].str.lower().str.count(
        '\\)',
        flags=re.I)
    x['has_union'] = x['Query'].str.lower().str.count(" union |union all", flags=re.I) > 0
    x['has_union'] = x['has_union'].astype(int64)
    x['depth_nested_queries'] = x['Query'].str.lower().str.count("\\(", flags=re.I)
    x['num_join'] = x['Query'].str.lower().str.count(
        " join |inner join|outer join|full outer join|full inner join|cross join|left join|right join",
        flags=re.I)
    x['num_sp_chars'] = x['Query'].parallel_apply(lambda a: len(re.findall(r'[\'";\-*/%=><|#]', a)))
    x['has_mismatched_quotes'] = x['Query'].parallel_apply(
        lambda sql_query: 1 if re.search(r"'.*[^']$|\".*[^\"]$", sql_query) else 0)
    x['has_tautology'] = x['Query'].parallel_apply(lambda sql_query: 1 if re.search(r"'[\s]*=[\s]*'", sql_query) else 0)
    return x


def is_malicious_sql(sql, threshold):
    input_df = pd.DataFrame([sql], columns=['Query'])
    input_df = add_features(input_df)
    numeric_features = ["num_tables", "num_columns", "num_literals", "num_parentheses", "has_union",
                        "depth_nested_queries", "num_join", "num_sp_chars", "has_mismatched_quotes", "has_tautology"]
    scaler = RobustScaler()
    x_in = scaler.fit_transform(input_df[numeric_features])

    preds = model.predict([input_df['Query'], x_in]).tolist()[0][0]
    if preds > float(threshold):
        return f'Malicious - {preds}'
    return f'Safe - {preds}'


def respond(
    message,
    history,
        threshold
):
    if len(history) > 5:
        history = history[1:]
    for val in history:
        if val[0].lower().strip() == message.lower().strip():
            return val[1]

    val = (message.lower().strip(), is_malicious_sql(message, threshold))
    print(val)
    return val[1]



"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    title='SafeSQL-v1-Demo',
    description='Please enter a SQL query as your input. You may adjust the minimum probability threshold for reporting SQLs as malicious using the slider below.',
    additional_inputs=[
        gr.Slider(minimum=0.01, maximum=0.99, value=0.75, step=0.01, label="Detection Probability Threshold "),
    ],
)


if __name__ == "__main__":
    demo.launch()