Spaces:
Sleeping
Sleeping
Updated assessment notebook, added solutions
Browse files- notebooks/assesment.ipynb +314 -15
- notebooks/solutions.ipynb +308 -0
notebooks/assesment.ipynb
CHANGED
@@ -4,27 +4,326 @@
|
|
4 |
"cell_type": "markdown",
|
5 |
"metadata": {},
|
6 |
"source": [
|
7 |
-
"# PySpark Data Engineering Assessment\n",
|
8 |
"\n",
|
9 |
-
"
|
10 |
"\n",
|
11 |
-
"1.
|
12 |
-
"
|
13 |
-
"
|
|
|
|
|
14 |
"\n",
|
15 |
-
"
|
16 |
"\n",
|
17 |
-
"
|
18 |
-
" - Find the average Fare by Pclass\n",
|
19 |
-
" - Find survival rate by Sex and Pclass\n",
|
20 |
-
" - etc.\n",
|
21 |
"\n",
|
22 |
-
"
|
|
|
23 |
"\n",
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
]
|
29 |
}
|
30 |
],
|
|
|
4 |
"cell_type": "markdown",
|
5 |
"metadata": {},
|
6 |
"source": [
|
7 |
+
"# PySpark Data Engineering Assessment (Extended)\n",
|
8 |
"\n",
|
9 |
+
"Welcome! In this notebook, you'll practice:\n",
|
10 |
"\n",
|
11 |
+
"1. Reading the **Titanic CSV** in **Pandas** and **PySpark**.\n",
|
12 |
+
"2. **Splitting** a single dataset into two DataFrames and **merging** them back together in both Pandas and Spark.\n",
|
13 |
+
"3. Data cleaning and aggregations in Pandas and Spark.\n",
|
14 |
+
"4. Writing and reading **Parquet** files.\n",
|
15 |
+
"5. Creating a **PySpark UDF** that leverages a **lightweight transformer model** to compute embeddings for passenger names.\n",
|
16 |
"\n",
|
17 |
+
"---\n",
|
18 |
"\n",
|
19 |
+
"## Dataset\n",
|
|
|
|
|
|
|
20 |
"\n",
|
21 |
+
"- **`titanic.csv`**: This file is in the `../data/` directory, containing columns such as:\n",
|
22 |
+
" - `PassengerId`, `Name`, `Sex`, `Age`, `Fare`, `Survived`, etc.\n",
|
23 |
"\n",
|
24 |
+
"We will:\n",
|
25 |
+
"1. Read `titanic.csv` into Pandas and Spark.\n",
|
26 |
+
"2. Split the original DataFrame into two subsets (simulating two “tables”).\n",
|
27 |
+
"3. Demonstrate merges/joins in Pandas and Spark using these subsets.\n",
|
28 |
+
"4. Perform data cleaning and transformations.\n",
|
29 |
+
"5. Write to Parquet.\n",
|
30 |
+
"6. Implement a Spark UDF to generate embeddings for passenger names.\n",
|
31 |
+
"\n",
|
32 |
+
"---\n",
|
33 |
+
"\n",
|
34 |
+
"## Instructions\n",
|
35 |
+
"\n",
|
36 |
+
"Throughout the notebook, you'll see `TODO` sections. Please fill in the required code. Feel free to add extra cells or explanations as needed.\n",
|
37 |
+
"\n",
|
38 |
+
"When finished, please save or export this notebook and submit according to your instructions.\n",
|
39 |
+
"\n",
|
40 |
+
"Let's begin!\n"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": null,
|
46 |
+
"metadata": {},
|
47 |
+
"outputs": [],
|
48 |
+
"source": [
|
49 |
+
"# 1. Imports and Spark Setup\n",
|
50 |
+
"\n",
|
51 |
+
"import os\n",
|
52 |
+
"import pandas as pd\n",
|
53 |
+
"\n",
|
54 |
+
"# PySpark imports\n",
|
55 |
+
"from pyspark.sql import SparkSession\n",
|
56 |
+
"from pyspark.sql import functions as F\n",
|
57 |
+
"from pyspark.sql.types import *\n",
|
58 |
+
"\n",
|
59 |
+
"# Create/initialize Spark session\n",
|
60 |
+
"spark = SparkSession.builder \\\n",
|
61 |
+
" .appName(\"TitanicAssessmentExtended\") \\\n",
|
62 |
+
" .getOrCreate()\n",
|
63 |
+
"\n",
|
64 |
+
"print(\"Spark version:\", spark.version)\n"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": null,
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"# 2. Read the Titanic CSV (Pandas & Spark)\n",
|
74 |
+
"# ========================================\n",
|
75 |
+
"\n",
|
76 |
+
"# Path to the CSV file\n",
|
77 |
+
"titanic_csv_path = os.path.join(\"..\", \"data\", \"titanic.csv\")\n",
|
78 |
+
"\n",
|
79 |
+
"# 2.1 TODO: Read 'titanic.csv' into a Pandas DataFrame (pd_df)\n",
|
80 |
+
"# pd_df = ?\n",
|
81 |
+
"\n",
|
82 |
+
"# Inspect the shape and first few rows\n",
|
83 |
+
"# print(\"pd_df shape:\", pd_df.shape)\n",
|
84 |
+
"# display(pd_df.head())\n",
|
85 |
+
"\n",
|
86 |
+
"# 2.2 TODO: Read 'titanic.csv' into a Spark DataFrame (spark_df)\n",
|
87 |
+
"# spark_df = ?\n",
|
88 |
+
"\n",
|
89 |
+
"# Check schema and row count\n",
|
90 |
+
"# spark_df.printSchema()\n",
|
91 |
+
"# print(\"spark_df count:\", spark_df.count())\n"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"execution_count": null,
|
97 |
+
"metadata": {},
|
98 |
+
"outputs": [],
|
99 |
+
"source": [
|
100 |
+
"# 3. Split Data into Two Subsets for Merging/Joining\n",
|
101 |
+
"# ==================================================\n",
|
102 |
+
"# Instead of using a second CSV, we'll simulate it by splitting the original dataset\n",
|
103 |
+
"# into two DataFrames:\n",
|
104 |
+
"# df_part1: subset of columns -> PassengerId, Name, Sex, Age\n",
|
105 |
+
"# df_part2: subset of columns -> PassengerId, Fare, Survived, Pclass\n",
|
106 |
+
"#\n",
|
107 |
+
"# We then merge these two separate DataFrames in both Pandas and Spark.\n",
|
108 |
+
"\n",
|
109 |
+
"# 3.1 Pandas Split\n",
|
110 |
+
"# ----------------\n",
|
111 |
+
"\n",
|
112 |
+
"# TODO: Create two new DataFrames from pd_df:\n",
|
113 |
+
"# pd_part1 = pd_df[[\"PassengerId\", \"Name\", \"Sex\", \"Age\"]]\n",
|
114 |
+
"# pd_part2 = pd_df[[\"PassengerId\", \"Fare\", \"Survived\", \"Pclass\"]]\n",
|
115 |
+
"\n",
|
116 |
+
"# pd_part1 = ?\n",
|
117 |
+
"# pd_part2 = ?\n",
|
118 |
+
"\n",
|
119 |
+
"# display(pd_part1.head())\n",
|
120 |
+
"# display(pd_part2.head())\n"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"cell_type": "code",
|
125 |
+
"execution_count": null,
|
126 |
+
"metadata": {},
|
127 |
+
"outputs": [],
|
128 |
+
"source": [
|
129 |
+
"# 3.2 Spark Split\n",
|
130 |
+
"# ---------------\n",
|
131 |
+
"# TODO: Create two new DataFrames from spark_df:\n",
|
132 |
+
"# spark_part1 = spark_df.select(\"PassengerId\", \"Name\", \"Sex\", \"Age\")\n",
|
133 |
+
"# spark_part2 = spark_df.select(\"PassengerId\", \"Fare\", \"Survived\", \"Pclass\")\n",
|
134 |
+
"\n",
|
135 |
+
"# spark_part1 = ?\n",
|
136 |
+
"# spark_part2 = ?\n",
|
137 |
+
"\n",
|
138 |
+
"# spark_part1.show(5)\n",
|
139 |
+
"# spark_part2.show(5)\n"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"execution_count": null,
|
145 |
+
"metadata": {},
|
146 |
+
"outputs": [],
|
147 |
+
"source": [
|
148 |
+
"# 4. Merging / Joining the Split DataFrames\n",
|
149 |
+
"# =========================================\n",
|
150 |
+
"\n",
|
151 |
+
"# 4.1 Merge in Pandas\n",
|
152 |
+
"# -------------------\n",
|
153 |
+
"# TODO: Merge pd_part1 and pd_part2 on \"PassengerId\"\n",
|
154 |
+
"# We'll call the merged DataFrame \"pd_merged\".\n",
|
155 |
+
"#\n",
|
156 |
+
"# pd_merged = pd_part1.merge(pd_part2, on=\"PassengerId\", how=\"inner\")\n",
|
157 |
+
"\n",
|
158 |
+
"# pd_merged = ?\n",
|
159 |
+
"# print(\"pd_merged shape:\", pd_merged.shape)\n",
|
160 |
+
"# display(pd_merged.head())\n"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"cell_type": "code",
|
165 |
+
"execution_count": null,
|
166 |
+
"metadata": {},
|
167 |
+
"outputs": [],
|
168 |
+
"source": [
|
169 |
+
"# 4.2 Join in Spark\n",
|
170 |
+
"# -----------------\n",
|
171 |
+
"# TODO: Join spark_part1 with spark_part2 on \"PassengerId\"\n",
|
172 |
+
"# We'll call the joined DataFrame \"spark_merged\".\n",
|
173 |
+
"#\n",
|
174 |
+
"# spark_merged = spark_part1.join(spark_part2, on=\"PassengerId\", how=\"inner\")\n",
|
175 |
+
"\n",
|
176 |
+
"# spark_merged = ?\n",
|
177 |
+
"# print(\"spark_merged count:\", spark_merged.count())\n",
|
178 |
+
"# spark_merged.show(5)\n",
|
179 |
+
"# spark_merged.printSchema()\n"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"cell_type": "code",
|
184 |
+
"execution_count": null,
|
185 |
+
"metadata": {},
|
186 |
+
"outputs": [],
|
187 |
+
"source": [
|
188 |
+
"# 5. Data Cleaning\n",
|
189 |
+
"# ================\n",
|
190 |
+
"# We'll focus on the merged DataFrames. For instance, drop rows that have missing\n",
|
191 |
+
"# values in certain columns like 'Age' or 'Fare'.\n",
|
192 |
+
"\n",
|
193 |
+
"# 5.1 TODO: Pandas DataFrame cleaning\n",
|
194 |
+
"# Create a cleaned version, 'pd_merged_clean',\n",
|
195 |
+
"# dropping nulls in [\"Age\", \"Fare\"].\n",
|
196 |
+
"\n",
|
197 |
+
"# pd_merged_clean = ?\n",
|
198 |
+
"\n",
|
199 |
+
"# print(\"Before dropna:\", pd_merged.shape)\n",
|
200 |
+
"# print(\"After dropna:\", pd_merged_clean.shape)\n",
|
201 |
+
"# pd_merged_clean.head()\n"
|
202 |
+
]
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"cell_type": "code",
|
206 |
+
"execution_count": null,
|
207 |
+
"metadata": {},
|
208 |
+
"outputs": [],
|
209 |
+
"source": [
|
210 |
+
"# 5.2 TODO: Spark DataFrame cleaning\n",
|
211 |
+
"# Create a cleaned version, 'spark_merged_clean',\n",
|
212 |
+
"# dropping nulls in [\"Age\", \"Fare\"].\n",
|
213 |
+
"\n",
|
214 |
+
"# spark_merged_clean = ?\n",
|
215 |
+
"\n",
|
216 |
+
"# print(\"spark_merged count BEFORE dropna:\", spark_merged.count())\n",
|
217 |
+
"# print(\"spark_merged_clean count AFTER dropna:\", spark_merged_clean.count())\n",
|
218 |
+
"# spark_merged_clean.show(5)\n"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"cell_type": "code",
|
223 |
+
"execution_count": null,
|
224 |
+
"metadata": {},
|
225 |
+
"outputs": [],
|
226 |
+
"source": [
|
227 |
+
"# 6. Basic Aggregations\n",
|
228 |
+
"# =====================\n",
|
229 |
+
"# Let's do a couple of group-by queries to glean insights.\n",
|
230 |
+
"\n",
|
231 |
+
"# 6.1 TODO: Pandas - Average fare by Pclass\n",
|
232 |
+
"# e.g. group by 'Pclass' and compute mean fare in pd_merged_clean\n",
|
233 |
+
"\n",
|
234 |
+
"# pd_avg_fare = ?\n",
|
235 |
+
"# pd_avg_fare\n"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": null,
|
241 |
+
"metadata": {},
|
242 |
+
"outputs": [],
|
243 |
+
"source": [
|
244 |
+
"# 6.2 TODO: Spark - Survival rate by Sex and Pclass\n",
|
245 |
+
"# e.g. groupBy(\"Sex\", \"Pclass\").agg(F.avg(\"Survived\"))\n",
|
246 |
+
"#\n",
|
247 |
+
"# spark_survival_rate = ?\n",
|
248 |
+
"# spark_survival_rate.show()\n"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"cell_type": "code",
|
253 |
+
"execution_count": null,
|
254 |
+
"metadata": {},
|
255 |
+
"outputs": [],
|
256 |
+
"source": [
|
257 |
+
"# 7. Writing to Parquet\n",
|
258 |
+
"# =====================\n",
|
259 |
+
"# We'll write the cleaned Spark DataFrame to a Parquet file (e.g. \"titanic_merged_clean.parquet\").\n",
|
260 |
+
"\n",
|
261 |
+
"# 7.1 TODO: Write spark_merged_clean to Parquet\n",
|
262 |
+
"# e.g., spark_merged_clean.write.mode(\"overwrite\").parquet(\"titanic_merged_clean.parquet\")\n",
|
263 |
+
"\n",
|
264 |
+
"# 7.2 TODO: Read it back into a new Spark DataFrame called 'spark_parquet_df'\n",
|
265 |
+
"# spark_parquet_df = ?\n",
|
266 |
+
"\n",
|
267 |
+
"# print(\"spark_parquet_df count:\", spark_parquet_df.count())\n",
|
268 |
+
"# spark_parquet_df.show(5)\n"
|
269 |
+
]
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"cell_type": "code",
|
273 |
+
"execution_count": null,
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": [
|
277 |
+
"# 8. Bonus 1: Create a Temp View and Query\n",
|
278 |
+
"# ========================================\n",
|
279 |
+
"# 8.1 TODO: Create a temp view with 'spark_merged_clean' (e.g. \"titanic_merged\")\n",
|
280 |
+
"# spark_merged_clean.createOrReplaceTempView(\"titanic_merged\")\n",
|
281 |
+
"\n",
|
282 |
+
"# 8.2 TODO: Spark SQL query example\n",
|
283 |
+
"# result_df = spark.sql(\"SELECT ... FROM titanic_merged GROUP BY ...\")\n",
|
284 |
+
"# result_df.show()\n"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"cell_type": "code",
|
289 |
+
"execution_count": null,
|
290 |
+
"metadata": {},
|
291 |
+
"outputs": [],
|
292 |
+
"source": [
|
293 |
+
"# 9. Bonus 2: Transformer Embeddings UDF\n",
|
294 |
+
"# ======================================\n",
|
295 |
+
"# We'll demonstrate a simple approach using a lightweight transformer model to embed passenger names.\n",
|
296 |
+
"# This is optional, but shows advanced usage of Spark UDFs.\n",
|
297 |
+
"\n",
|
298 |
+
"# Requirements: e.g. \"transformers\" or \"sentence-transformers\" in your environment.\n",
|
299 |
+
"# from transformers import pipeline\n",
|
300 |
+
"# embedding_pipeline = pipeline(\"feature-extraction\", model=\"distilbert-base-uncased\")\n",
|
301 |
+
"# OR\n",
|
302 |
+
"# from sentence_transformers import SentenceTransformer\n",
|
303 |
+
"# model = SentenceTransformer(\"all-MiniLM-L6-v2\")\n",
|
304 |
+
"\n",
|
305 |
+
"# 9.1 TODO: import / load the model/pipeline\n",
|
306 |
+
"# e.g.\n",
|
307 |
+
"# from transformers import pipeline\n",
|
308 |
+
"# embedding_pipeline = pipeline(\"feature-extraction\", model=\"distilbert-base-uncased\")\n",
|
309 |
+
"\n",
|
310 |
+
"# 9.2 Define a Python function that takes a passenger name (string) -> returns a list of floats\n",
|
311 |
+
"\n",
|
312 |
+
"# def get_name_embedding(name: str) -> List[float]:\n",
|
313 |
+
"# # TODO: use embedding_pipeline or model to produce an embedding\n",
|
314 |
+
"# # embedding = ?\n",
|
315 |
+
"# # NOTE: verify shape (embedding might be list of lists)\n",
|
316 |
+
"# return ???\n",
|
317 |
+
"\n",
|
318 |
+
"# 9.3 Wrap that function in a PySpark UDF\n",
|
319 |
+
"# from pyspark.sql.functions import udf\n",
|
320 |
+
"# from pyspark.sql.types import ArrayType, FloatType\n",
|
321 |
+
"# udf_get_name_embedding = udf(get_name_embedding, ArrayType(FloatType()))\n",
|
322 |
+
"\n",
|
323 |
+
"# 9.4 Apply the UDF to create a new column 'NameEmbedding' in spark_merged_clean\n",
|
324 |
+
"# spark_embedded = spark_merged_clean.withColumn(\"NameEmbedding\", udf_get_name_embedding(F.col(\"Name\")))\n",
|
325 |
+
"\n",
|
326 |
+
"# spark_embedded.select(\"Name\", \"NameEmbedding\").show(truncate=False)\n"
|
327 |
]
|
328 |
}
|
329 |
],
|
notebooks/solutions.ipynb
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"## Solutions Guide"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import os\n",
|
17 |
+
"import pandas as pd\n",
|
18 |
+
"\n",
|
19 |
+
"# PySpark imports\n",
|
20 |
+
"from pyspark.sql import SparkSession\n",
|
21 |
+
"from pyspark.sql import functions as F\n",
|
22 |
+
"from pyspark.sql.types import *\n",
|
23 |
+
"\n",
|
24 |
+
"# Create or get Spark session\n",
|
25 |
+
"spark = SparkSession.builder \\\n",
|
26 |
+
" .appName(\"TitanicAssessmentExtended\") \\\n",
|
27 |
+
" .getOrCreate()\n",
|
28 |
+
"\n",
|
29 |
+
"print(\"Spark version:\", spark.version)\n"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "markdown",
|
34 |
+
"metadata": {},
|
35 |
+
"source": [
|
36 |
+
"Explanation:\n",
|
37 |
+
"\n",
|
38 |
+
" We import pandas, pyspark.sql modules, and create a Spark session named \"TitanicAssessmentExtended\".\n",
|
39 |
+
" Checking spark.version helps confirm which version of Spark is running."
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": null,
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [],
|
47 |
+
"source": [
|
48 |
+
"#Read in data \n",
|
49 |
+
"titanic_csv_path = os.path.join(\"..\", \"data\", \"titanic.csv\")\n",
|
50 |
+
"\n",
|
51 |
+
"# 2.1 Read into a Pandas DataFrame\n",
|
52 |
+
"pd_df = pd.read_csv(titanic_csv_path)\n",
|
53 |
+
"\n",
|
54 |
+
"print(\"pd_df shape:\", pd_df.shape)\n",
|
55 |
+
"display(pd_df.head())\n"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "markdown",
|
60 |
+
"metadata": {},
|
61 |
+
"source": [
|
62 |
+
"We use pd.read_csv(...) to read the Titanic data into a pd.DataFrame.\n",
|
63 |
+
".shape gives the (rows, columns).\n",
|
64 |
+
".head() shows the top few rows."
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": null,
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"# 2.2 Read into a Spark DataFrame\n",
|
74 |
+
"spark_df = spark.read.csv(titanic_csv_path, header=True, inferSchema=True)\n",
|
75 |
+
"\n",
|
76 |
+
"spark_df.printSchema()\n",
|
77 |
+
"print(\"spark_df count:\", spark_df.count())\n",
|
78 |
+
"spark_df.show(5)\n"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "markdown",
|
83 |
+
"metadata": {},
|
84 |
+
"source": [
|
85 |
+
"We specify header=True so Spark knows the first row is column headers, and inferSchema=True so it automatically detects column types.\n",
|
86 |
+
".printSchema() reveals the inferred schema.\n",
|
87 |
+
".count() and .show() let us see row counts and sample rows."
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": null,
|
93 |
+
"metadata": {},
|
94 |
+
"outputs": [],
|
95 |
+
"source": [
|
96 |
+
"#Split data into subsets\n",
|
97 |
+
"\n",
|
98 |
+
"pd_part1 = pd_df[[\"PassengerId\", \"Name\", \"Sex\", \"Age\"]]\n",
|
99 |
+
"pd_part2 = pd_df[[\"PassengerId\", \"Fare\", \"Survived\", \"Pclass\"]]\n",
|
100 |
+
"\n",
|
101 |
+
"display(pd_part1.head())\n",
|
102 |
+
"display(pd_part2.head())\n"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": null,
|
108 |
+
"metadata": {},
|
109 |
+
"outputs": [],
|
110 |
+
"source": [
|
111 |
+
"spark_part1 = spark_df.select(\"PassengerId\", \"Name\", \"Sex\", \"Age\")\n",
|
112 |
+
"spark_part2 = spark_df.select(\"PassengerId\", \"Fare\", \"Survived\", \"Pclass\")\n",
|
113 |
+
"\n",
|
114 |
+
"spark_part1.show(5)\n",
|
115 |
+
"spark_part2.show(5)\n"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": null,
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"#Merging/Joining split dataframes \n",
|
125 |
+
"\n",
|
126 |
+
"pd_merged = pd_part1.merge(pd_part2, on=\"PassengerId\", how=\"inner\")\n",
|
127 |
+
"print(\"pd_merged shape:\", pd_merged.shape)\n",
|
128 |
+
"display(pd_merged.head())\n"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "markdown",
|
133 |
+
"metadata": {},
|
134 |
+
"source": [
|
135 |
+
"on=\"PassengerId\" merges the two tables by the PassengerId key.\n",
|
136 |
+
"how=\"inner\" ensures rows only appear if they exist in both subsets (should be all matching in this case)."
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "code",
|
141 |
+
"execution_count": null,
|
142 |
+
"metadata": {},
|
143 |
+
"outputs": [],
|
144 |
+
"source": [
|
145 |
+
"#Join in spark\n",
|
146 |
+
"\n",
|
147 |
+
"spark_merged = spark_part1.join(spark_part2, on=\"PassengerId\", how=\"inner\")\n",
|
148 |
+
"print(\"spark_merged count:\", spark_merged.count())\n",
|
149 |
+
"spark_merged.show(5)\n",
|
150 |
+
"spark_merged.printSchema()\n"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "markdown",
|
155 |
+
"metadata": {},
|
156 |
+
"source": [
|
157 |
+
"Spark uses .join(df2, on=\"PassengerId\", how=\"inner\").\n",
|
158 |
+
"spark_merged.show(5) and .printSchema() confirm the merge result."
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": null,
|
164 |
+
"metadata": {},
|
165 |
+
"outputs": [],
|
166 |
+
"source": [
|
167 |
+
"#Data cleaning\n",
|
168 |
+
"\n",
|
169 |
+
"pd_merged_clean = pd_merged.dropna(subset=[\"Age\", \"Fare\"])\n",
|
170 |
+
"print(\"Before dropna:\", pd_merged.shape)\n",
|
171 |
+
"print(\"After dropna:\", pd_merged_clean.shape)\n",
|
172 |
+
"pd_merged_clean.head()"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": null,
|
178 |
+
"metadata": {},
|
179 |
+
"outputs": [],
|
180 |
+
"source": [
|
181 |
+
"#Spark data cleaning\n",
|
182 |
+
"spark_merged_clean = spark_merged.dropna(subset=[\"Age\", \"Fare\"])\n",
|
183 |
+
"print(\"spark_merged count BEFORE dropna:\", spark_merged.count())\n",
|
184 |
+
"print(\"spark_merged_clean count AFTER dropna:\", spark_merged_clean.count())\n",
|
185 |
+
"spark_merged_clean.show(5)\n"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": null,
|
191 |
+
"metadata": {},
|
192 |
+
"outputs": [],
|
193 |
+
"source": [
|
194 |
+
"#Basic aggregations\n",
|
195 |
+
"\n",
|
196 |
+
"pd_avg_fare = pd_merged_clean.groupby(\"Pclass\")[\"Fare\"].mean()\n",
|
197 |
+
"pd_avg_fare"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"cell_type": "code",
|
202 |
+
"execution_count": null,
|
203 |
+
"metadata": {},
|
204 |
+
"outputs": [],
|
205 |
+
"source": [
|
206 |
+
"#Spark survival rate by sex and pclass\n",
|
207 |
+
"\n",
|
208 |
+
"spark_survival_rate = (\n",
|
209 |
+
" spark_merged_clean\n",
|
210 |
+
" .groupBy(\"Sex\", \"Pclass\")\n",
|
211 |
+
" .agg(F.avg(\"Survived\").alias(\"survival_rate\"))\n",
|
212 |
+
")\n",
|
213 |
+
"spark_survival_rate.show()\n"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"execution_count": null,
|
219 |
+
"metadata": {},
|
220 |
+
"outputs": [],
|
221 |
+
"source": [
|
222 |
+
"#Write spark df to parquet\n",
|
223 |
+
"\n",
|
224 |
+
"spark_merged_clean.write.mode(\"overwrite\").parquet(\"titanic_merged_clean.parquet\")"
|
225 |
+
]
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"cell_type": "code",
|
229 |
+
"execution_count": null,
|
230 |
+
"metadata": {},
|
231 |
+
"outputs": [],
|
232 |
+
"source": [
|
233 |
+
"#Read parquet back in\n",
|
234 |
+
"\n",
|
235 |
+
"spark_parquet_df = spark.read.parquet(\"titanic_merged_clean.parquet\")\n",
|
236 |
+
"print(\"spark_parquet_df count:\", spark_parquet_df.count())\n",
|
237 |
+
"spark_parquet_df.show(5)\n"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "code",
|
242 |
+
"execution_count": null,
|
243 |
+
"metadata": {},
|
244 |
+
"outputs": [],
|
245 |
+
"source": [
|
246 |
+
"#Bonus - create a temp view/query\n",
|
247 |
+
"\n",
|
248 |
+
"spark_merged_clean.createOrReplaceTempView(\"titanic_merged\")\n",
|
249 |
+
"\n",
|
250 |
+
"result_df = spark.sql(\n",
|
251 |
+
" \"\"\"\n",
|
252 |
+
" SELECT Pclass,\n",
|
253 |
+
" COUNT(*) AS passenger_count,\n",
|
254 |
+
" AVG(Age) AS avg_age\n",
|
255 |
+
" FROM titanic_merged\n",
|
256 |
+
" GROUP BY Pclass\n",
|
257 |
+
" ORDER BY Pclass\n",
|
258 |
+
" \"\"\")\n",
|
259 |
+
"result_df.show()\n"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"execution_count": null,
|
265 |
+
"metadata": {},
|
266 |
+
"outputs": [],
|
267 |
+
"source": [
|
268 |
+
"# Example imports (make sure 'transformers' is installed)\n",
|
269 |
+
"from transformers import pipeline\n",
|
270 |
+
"embedding_pipeline = pipeline(\"feature-extraction\", model=\"distilbert-base-uncased\")\n",
|
271 |
+
"\n",
|
272 |
+
"# Example function to get the name embedding\n",
|
273 |
+
"def get_name_embedding(name: str):\n",
|
274 |
+
" # The pipeline will return a list of lists of floats.\n",
|
275 |
+
" # Typically shape: (1, sequence_length, hidden_size).\n",
|
276 |
+
" # We'll take the first token or perhaps average them.\n",
|
277 |
+
" output = embedding_pipeline(name)\n",
|
278 |
+
" # output[0] is shape [sequence_length, hidden_size]\n",
|
279 |
+
" # let's do a simple average across the sequence dimension:\n",
|
280 |
+
" token_embeddings = output[0]\n",
|
281 |
+
" # average across tokens:\n",
|
282 |
+
" mean_embedding = [float(sum(x) / len(x)) for x in zip(*token_embeddings)]\n",
|
283 |
+
" return mean_embedding\n",
|
284 |
+
"\n",
|
285 |
+
"# Convert this Python function to a Spark UDF\n",
|
286 |
+
"from pyspark.sql.functions import udf\n",
|
287 |
+
"from pyspark.sql.types import ArrayType, FloatType\n",
|
288 |
+
"\n",
|
289 |
+
"udf_get_name_embedding = udf(get_name_embedding, ArrayType(FloatType()))\n",
|
290 |
+
"\n",
|
291 |
+
"# Apply it to add a new column\n",
|
292 |
+
"spark_embedded = spark_merged_clean.withColumn(\n",
|
293 |
+
" \"NameEmbedding\",\n",
|
294 |
+
" udf_get_name_embedding(F.col(\"Name\"))\n",
|
295 |
+
")\n",
|
296 |
+
"\n",
|
297 |
+
"spark_embedded.select(\"Name\", \"NameEmbedding\").show(truncate=False)\n"
|
298 |
+
]
|
299 |
+
}
|
300 |
+
],
|
301 |
+
"metadata": {
|
302 |
+
"language_info": {
|
303 |
+
"name": "python"
|
304 |
+
}
|
305 |
+
},
|
306 |
+
"nbformat": 4,
|
307 |
+
"nbformat_minor": 2
|
308 |
+
}
|