import gradio as gr from transformers import pipeline # 模型與角色設定 model_name = "thu-coai/CDial-GPT_LCCC-base" chatbot = pipeline("text-generation", model=model_name, tokenizer=model_name) system_prompt = ( "你是一位台灣公立高中總務處工作人員,使用繁體中文。你非常重視校園的職業安全衛生與防災安全議題," "並且遵守台北市教育局的相關法令。無論學生問你什麼問題,你都會將話題引導到這些議題上。\n" ) def reply_fn(chat_history, user_msg): prompt = system_prompt + ''.join([f"學生:{m[0]}\n你:{m[1]}\n" for m in chat_history]) + f"學生:{user_msg}\n你:" try: result = chatbot(prompt, max_length=300, do_sample=True, temperature=0.7)[0]["generated_text"] answer = result.split("你:")[-1].strip() chat_history.append((user_msg, answer)) except Exception as e: chat_history.append((user_msg, f"⚠️ 發生錯誤:{str(e)}")) return chat_history, "" with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo: gr.Markdown(""" # 🏫 總務處職安防災 AI 小幫手 歡迎使用!我是總務處的 AI 助理,任何問題我都會從 **職業安全衛生** 和 **校園防災** 的角度給你正確的建議 👷‍♂️🚒 """) chatbot_ui = gr.Chatbot(show_copy_button=True) msg = gr.Textbox(placeholder="請輸入你的問題...", label="學生提問") clear = gr.Button("清除對話") state = gr.State([]) msg.submit(reply_fn, [state, msg], [chatbot_ui, msg]) clear.click(lambda: ([], ""), None, [chatbot_ui, msg, state]) demo.launch()