Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib as plt
|
4 |
+
import openai
|
5 |
+
import gradio as gr
|
6 |
+
import time
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Importing required components directly from gradio
|
10 |
+
from gradio import components
|
11 |
+
|
12 |
+
SECRET_TOKEN = os.getenv('openai.api_key')
|
13 |
+
messages = [{"role": "system", "content": "You are a doctor"}]
|
14 |
+
|
15 |
+
def send_message(message):
|
16 |
+
response = openai.ChatCompletion.create(
|
17 |
+
model="gpt-3.5-turbo",
|
18 |
+
messages=message,
|
19 |
+
api_key=SECRET_TOKEN
|
20 |
+
)
|
21 |
+
ChatGPT_reply = response["choices"][0]["message"]["content"]
|
22 |
+
return ChatGPT_reply
|
23 |
+
|
24 |
+
def adaptive_truncate(message, token_limit):
|
25 |
+
# Truncate the message content to fit within the token limit
|
26 |
+
tokens = message["content"].split()
|
27 |
+
truncated_tokens = []
|
28 |
+
total_tokens = 0
|
29 |
+
for token in tokens:
|
30 |
+
total_tokens += len(token.split())
|
31 |
+
if total_tokens <= token_limit:
|
32 |
+
truncated_tokens.append(token)
|
33 |
+
else:
|
34 |
+
break
|
35 |
+
message["content"] = " ".join(truncated_tokens)
|
36 |
+
return message
|
37 |
+
|
38 |
+
def CustomChatGPT(enter_your_question):
|
39 |
+
# Adaptive token limit to leave some space for response
|
40 |
+
token_limit = 4000
|
41 |
+
|
42 |
+
# Initialize the messages list
|
43 |
+
messages = [{"role": "system", "content": "You are a doctor"}]
|
44 |
+
|
45 |
+
# Send user input as separate messages to the model
|
46 |
+
user_input_tokens = enter_your_question.split()
|
47 |
+
current_message = {"role": "user", "content": ""}
|
48 |
+
current_token_count = len("You are a doctor".split())
|
49 |
+
|
50 |
+
for token in user_input_tokens:
|
51 |
+
token_tokens = len(token.split())
|
52 |
+
if current_token_count + token_tokens <= token_limit:
|
53 |
+
current_message["content"] += token + " "
|
54 |
+
current_token_count += token_tokens
|
55 |
+
else:
|
56 |
+
# Truncate the current message to fit within token limit
|
57 |
+
current_message = adaptive_truncate(current_message, token_limit)
|
58 |
+
# Send the current message and get the response
|
59 |
+
reply = send_message(messages + [current_message])
|
60 |
+
messages.append({"role": "user", "content": " ".join(current_message["content"].split())})
|
61 |
+
messages[-1]["content"] = reply
|
62 |
+
# Start the next message with the remaining token
|
63 |
+
current_message = {"role": "user", "content": token + " "}
|
64 |
+
current_token_count = token_tokens
|
65 |
+
|
66 |
+
# Truncate and send the last message
|
67 |
+
current_message = adaptive_truncate(current_message, token_limit)
|
68 |
+
reply = send_message(messages + [current_message])
|
69 |
+
messages.append({"role": "user", "content": " ".join(current_message["content"].split())})
|
70 |
+
messages[-1]["content"] = reply
|
71 |
+
|
72 |
+
return reply
|
73 |
+
|
74 |
+
# Set up Gradio interface
|
75 |
+
iface = gr.Interface(
|
76 |
+
fn=CustomChatGPT,
|
77 |
+
inputs=components.Textbox(lines=1, label="Enter your question"),
|
78 |
+
outputs=components.Textbox(label="Doctor's advice"),
|
79 |
+
title="Doctor's desk. Ask any help related to health?",
|
80 |
+
examples=[
|
81 |
+
["What are the symptoms of flu?"],
|
82 |
+
["How can I prevent a cold?"],
|
83 |
+
["Is it safe to take antibiotics for a viral infection?"],
|
84 |
+
],
|
85 |
+
live=False, # Removed 'live' mode so that action is taken only after submit button is clicked
|
86 |
+
allow_flagging="never",
|
87 |
+
)
|
88 |
+
|
89 |
+
iface.launch(inline=False)
|