Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PyPDF2 import PdfReader | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Initialize the tokenizer and model from the saved checkpoint | |
tokenizer = AutoTokenizer.from_pretrained("himmeow/vi-gemma-2b-RAG") | |
model = AutoModelForCausalLM.from_pretrained( | |
"himmeow/vi-gemma-2b-RAG", | |
device_map="auto", | |
torch_dtype=torch.bfloat16 | |
) | |
# Use GPU if available | |
if torch.cuda.is_available(): | |
model.to("cuda") | |
# Set up the Streamlit app layout | |
st.set_page_config(page_title="RAG PDF Chatbot", layout="wide") | |
# Sidebar with file upload and app title with creator details | |
st.sidebar.title("π PDF Upload") | |
uploaded_files = st.sidebar.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True) | |
# Multicolor sidebar background | |
st.sidebar.markdown(""" | |
<style> | |
.sidebar .sidebar-content { | |
background: linear-gradient(135deg, #ff9a9e, #fad0c4 40%, #fad0c4 60%, #ff9a9e); | |
color: white; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
st.sidebar.markdown(""" | |
### Created by: [Engr. Hamesh Raj](https://www.linkedin.com/in/datascientisthameshraj/) | |
""") | |
# Main title | |
st.markdown(""" | |
<h1 style='text-align: center; color: #ff6f61;'>π RAG PDF Chatbot</h1> | |
""", unsafe_allow_html=True) | |
# Multicolor background for the main content | |
st.markdown(""" | |
<style> | |
body { | |
background: linear-gradient(135deg, #89f7fe 0%, #66a6ff 100%); | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Input field for user queries | |
query = st.text_input("Enter your query here:") | |
submit_button = st.button("Submit") | |
# Initialize chat history | |
if 'chat_history' not in st.session_state: | |
st.session_state.chat_history = [] | |
# Function to extract text from PDF files | |
def extract_text_from_pdfs(files): | |
text = "" | |
for uploaded_file in files: | |
reader = PdfReader(uploaded_file) | |
for page in reader.pages: | |
text += page.extract_text() + "\n" | |
return text | |
# Handle the query submission | |
if submit_button and query: | |
# Extract text from uploaded PDFs | |
if uploaded_files: | |
pdf_text = extract_text_from_pdfs(uploaded_files) | |
# Prepare the input prompt | |
prompt = f""" | |
Based on the following context/document: | |
{pdf_text} | |
Please answer the question: {query} | |
""" | |
# Encode the input text | |
input_ids = tokenizer(prompt, return_tensors="pt") | |
# Use GPU for input ids if available | |
if torch.cuda.is_available(): | |
input_ids = input_ids.to("cuda") | |
# Generate the response | |
outputs = model.generate( | |
**input_ids, | |
max_new_tokens=500, | |
no_repeat_ngram_size=5, | |
) | |
# Decode the response and clean it | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
clean_response = response.strip() | |
# Update chat history | |
st.session_state.chat_history.append((query, clean_response)) | |
# Display chat history | |
if st.session_state.chat_history: | |
for q, a in st.session_state.chat_history: | |
st.markdown(f"**Question:** {q}") | |
st.markdown(f"**Answer:** {a}") | |
st.write("---") |