from transformers import WhisperProcessor, WhisperForConditionalGeneration import gradio as gr from pydub import AudioSegment, silence import tempfile import torch import torchaudio MODEL_NAME = "dataprizma/whisper-large-v3-turbo" processor = WhisperProcessor.from_pretrained(MODEL_NAME) model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME) device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) def split_on_silence_with_duration_control(audio, min_len, max_len, silence_thresh=-40): silences = silence.detect_silence(audio, min_silence_len=500, silence_thresh=silence_thresh) silences = [((start + end) // 2) for start, end in silences] chunks = [] start = 0 while start < len(audio): end = min(start + max_len, len(audio)) candidates = [s for s in silences if start + min_len <= s <= end] split_point = candidates[-1] if candidates else end chunks.append(audio[start:split_point]) start = split_point return chunks def transcribe(audio_file): # Load audio using pydub audio = AudioSegment.from_file(audio_file) # Convert to mono and 16kHz if needed if audio.channels > 1: audio = audio.set_channels(1) if audio.frame_rate != 16000: audio = audio.set_frame_rate(16000) # Detect silent chunks chunks = split_on_silence_with_duration_control( audio, min_len=15000, max_len=25000, silence_thresh=-40 ) # Transcribe each chunk results = [] for chunk in chunks: with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as tmpfile: chunk.export(tmpfile.name, format="wav") waveform, _ = torchaudio.load(tmpfile.name) input_features = processor( waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt", language="uz" ).input_features.to(device) with torch.no_grad(): predicted_ids = model.generate(input_features) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] results.append(transcription) return " ".join(results) demo = gr.Blocks() file_transcribe = gr.Interface( fn=transcribe, inputs=gr.Audio(type="filepath", label="Audio file"), outputs="text", title="Whisper Large V3: Transcribe Audio", description="Whisper Large V3 fine-tuned for Uzbek language by Dataprizma", ) with demo: gr.TabbedInterface([file_transcribe], ["Audio file"]) demo.launch()