Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from utils import extraire_informations_carte | |
def predict(img, type_doc): | |
data = {"Nouvelle_CNI":1,"ANCIENNE_CNI":2,"PERMIS_DE_CONDUITE":3} | |
type_document = data[type_doc] | |
result = extraire_informations_carte(img,type_document) | |
return result | |
image = gr.components.Image(type = "filepath") | |
type_document = gr.components.Dropdown(["Nouvelle_CNI","ANCIENNE_CNI","PERMIS_DE_CONDUITE"]) | |
out_lab = gr.components.Textbox() | |
### 4. Gradio app ### | |
# Create title, description and article strings | |
title = "OCR FOR IMAGES ANALYSIS" | |
description = "WE USE OCR TO EXTRACT INFORMATIONS FROM DIFFERENT TYPES OF DOCUMENTS AND FORMALIZE THE RESULT INTO JSON." | |
article = "Created by data354." | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example,i] for example,i in zip(os.listdir("examples"),["ANCIENNE_CNI","ANCIENNE_CNI","Nouvelle_CNI","Nouvelle_CNI","Nouvelle_CNI","PERMIS_DE_CONDUITE","PERMIS_DE_CONDUITE"])] | |
print(example_list) | |
#[gr.Label(label="Predictions"), # what are the outputs? | |
#gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs | |
# Create examples list from "examples/" directory | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # mapping function from input to output | |
inputs= [image,type_document], #gr.Image(type="pil"), # what are the inputs? | |
outputs=out_lab, | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article | |
) | |
# Launch the demo! | |
demo.launch(debug = True) |