Spaces:
Runtime error
Runtime error
import faiss | |
import numpy as np | |
import os | |
from sentence_transformers import SentenceTransformer | |
from retriever.reranker import rerank_documents | |
# 1. μλ² λ© λͺ¨λΈ λ‘λ | |
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
# 2. 벑ν°DB (FAISS Index) μ΄κΈ°ν | |
INDEX_PATH = "data/index/index.faiss" | |
DOCS_PATH = "data/index/docs.npy" | |
if os.path.exists(INDEX_PATH) and os.path.exists(DOCS_PATH): | |
index = faiss.read_index(INDEX_PATH) | |
documents = np.load(DOCS_PATH, allow_pickle=True) | |
else: | |
index = None | |
documents = None | |
print("No FAISS index or docs found. Please build the index first.") | |
# 3. κ²μ ν¨μ | |
def search_documents(query: str, top_k: int = 5): | |
if index is None or documents is None: | |
raise ValueError("Index or documents not loaded. Build the FAISS index first.") | |
query_vector = embedding_model.encode([query]) | |
query_vector = np.array(query_vector).astype('float32') | |
distances, indices = index.search(query_vector, top_k) | |
results = [] | |
for idx in indices[0]: | |
if idx < len(documents): | |
results.append(documents[idx]) | |
return results | |
# # 1. Rough FAISS κ²μ | |
# query_embedding = embedding_model.encode([query], convert_to_tensor=True).cpu().detach().numpy() | |
# distances, indices = index.search(query_embedding, top_k) | |
# results = [documents[idx] for idx in indices[0] if idx != -1] | |
# # 2. μ λ° Reranking | |
# reranked_results = rerank_documents(query, results, top_k=top_k) | |
# return reranked_results | |