docker-api / retriever /vectordb.py
dasomaru's picture
Upload folder using huggingface_hub
06696b5 verified
import faiss
import numpy as np
import os
from sentence_transformers import SentenceTransformer
from retriever.reranker import rerank_documents
# 1. μž„λ² λ”© λͺ¨λΈ λ‘œλ“œ
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# 2. 벑터DB (FAISS Index) μ΄ˆκΈ°ν™”
INDEX_PATH = "data/index/index.faiss"
DOCS_PATH = "data/index/docs.npy"
if os.path.exists(INDEX_PATH) and os.path.exists(DOCS_PATH):
index = faiss.read_index(INDEX_PATH)
documents = np.load(DOCS_PATH, allow_pickle=True)
else:
index = None
documents = None
print("No FAISS index or docs found. Please build the index first.")
# 3. 검색 ν•¨μˆ˜
def search_documents(query: str, top_k: int = 5):
if index is None or documents is None:
raise ValueError("Index or documents not loaded. Build the FAISS index first.")
query_vector = embedding_model.encode([query])
query_vector = np.array(query_vector).astype('float32')
distances, indices = index.search(query_vector, top_k)
results = []
for idx in indices[0]:
if idx < len(documents):
results.append(documents[idx])
return results
# # 1. Rough FAISS 검색
# query_embedding = embedding_model.encode([query], convert_to_tensor=True).cpu().detach().numpy()
# distances, indices = index.search(query_embedding, top_k)
# results = [documents[idx] for idx in indices[0] if idx != -1]
# # 2. μ •λ°€ Reranking
# reranked_results = rerank_documents(query, results, top_k=top_k)
# return reranked_results