Spaces:
Runtime error
Runtime error
File size: 2,336 Bytes
06696b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
# vectordb_relank_law.py
import faiss
import numpy as np
import os
from chromadb import PersistentClient
from chromadb.utils import embedding_functions
from sentence_transformers import SentenceTransformer
from retriever.reranker import rerank_documents
from constants.embedding_models import embedding_models
# chroma vector config v2
# law_db config v2
CHROMA_PATH = os.path.abspath("data/index/exam_db")
COLLECTION_NAME = "exam_all"
EMBEDDING_MODEL_NAME = embedding_models[1] # μ¬μ©νκ³ μ νλ λͺ¨λΈ μ ν
# 1. μλ² λ© λͺ¨λΈ λ‘λ v2
# embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
embedding_model = SentenceTransformer(EMBEDDING_MODEL_NAME)
# 2. μλ² λ© ν¨μ μ€μ
embedding_fn = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=EMBEDDING_MODEL_NAME)
# 3. Chroma ν΄λΌμ΄μΈνΈ λ° μ»¬λ μ
λ‘λ
client = PersistentClient(path=CHROMA_PATH)
collection = client.get_collection(name=COLLECTION_NAME, embedding_function=embedding_fn)
# 4. κ²μ ν¨μ
def search_documents(query: str, top_k: int = 5):
print(f"\nπ κ²μμ΄: '{query}'")
results = collection.query(
query_texts=[query],
n_results=top_k,
include=["documents", "metadatas", "distances"]
)
# λ¬Έμ 리μ€νΈλ§ μΆμΆ
docs = results['documents'][0]
metadatas = results['metadatas'][0]
distances = results['distances'][0]
# Rerank λ¬Έμ
reranked_docs = rerank_documents(query, docs, top_k=top_k)
reranked_data = []
for doc in reranked_docs:
idx = docs.index(doc)
reranked_data.append((doc, metadatas[idx], distances[idx]))
# for i, (doc, meta, dist) in enumerate(reranked_data):
# print(f"\nπ κ²°κ³Ό {i+1} (μ μ¬λ: {1 - dist:.2f})")
# print(f"λ¬Έμ: {doc[:150]}...")
# print("λ©νλ°μ΄ν°:")
# print(meta)
return reranked_data # νμνλ©΄ 리ν΄
# for i, (doc, meta, dist) in enumerate(zip(
# results['documents'][0],
# results['metadatas'][0],
# results['distances'][0]
# )):
# print(f"\nπ κ²°κ³Ό {i+1} (μ μ¬λ: {1 - dist:.2f})")
# print(f"λ¬Έμ: {doc[:150]}...")
# print("λ©νλ°μ΄ν°:")
# print(meta) |