File size: 15,046 Bytes
14ec3e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ddeff
14ec3e6
d1ddeff
14ec3e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ddeff
14ec3e6
 
 
 
 
d1ddeff
 
 
 
14ec3e6
d1ddeff
 
 
 
 
 
14ec3e6
d1ddeff
 
 
 
 
 
14ec3e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ddeff
 
 
14ec3e6
 
 
 
 
 
 
 
 
d1ddeff
 
 
14ec3e6
 
 
 
 
 
 
 
 
 
d1ddeff
 
 
14ec3e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ddeff
 
14ec3e6
 
 
 
 
 
 
 
 
 
d1ddeff
 
14ec3e6
 
 
 
 
 
d1ddeff
 
14ec3e6
 
 
 
 
d1ddeff
 
14ec3e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import os
import tempfile
import shutil
import torch
import gradio as gr
from pathlib import Path
from typing import Optional, List, Dict, Any, Union
import requests
from urllib.parse import urlparse

# Docling imports
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions, TesseractCliOcrOptions
from docling.document_converter import DocumentConverter, PdfFormatOption, WordFormatOption, SimplePipeline

# LangChain imports
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.schema import Document

# Transformers imports for IBM Granite model
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM

# Initialize IBM Granite model and tokenizer
print("Loading Granite model and tokenizer...")
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.2-8b-instruct")
model = AutoModelForCausalLM.from_pretrained(
    "ibm-granite/granite-3.2-8b-instruct", 
    device_map="auto",
    torch_dtype=torch.bfloat16
)
print("Model loaded successfully!")

# Helper function to detect document format
def get_document_format(file_path) -> InputFormat:
    """Determine the document format based on file extension"""
    try:
        file_path = str(file_path)
        extension = os.path.splitext(file_path)[1].lower()
        format_map = {
            '.pdf': InputFormat.PDF,
            '.docx': InputFormat.DOCX,
            '.doc': InputFormat.DOCX,
            '.pptx': InputFormat.PPTX,
            '.html': InputFormat.HTML,
            '.htm': InputFormat.HTML
        }
        return format_map.get(extension, None)
    except Exception as e:
        return f"Error in get_document_format: {str(e)}"

# Function to convert documents to markdown
def convert_document_to_markdown(doc_path) -> str:
    """Convert document to markdown using simplified pipeline"""
    try:
        # Convert to absolute path string
        input_path = os.path.abspath(str(doc_path))
        print(f"Converting document: {doc_path}")
        # Create temporary directory for processing
        with tempfile.TemporaryDirectory() as temp_dir:
            # Copy input file to temp directory
            temp_input = os.path.join(temp_dir, os.path.basename(input_path))
            shutil.copy2(input_path, temp_input)
            # Configure pipeline options
            pipeline_options = PdfPipelineOptions()
            pipeline_options.do_ocr = False  # Disable OCR temporarily
            pipeline_options.do_table_structure = True
            # Create converter with minimal options
            converter = DocumentConverter(
                allowed_formats=[
                    InputFormat.PDF,
                    InputFormat.DOCX,
                    InputFormat.HTML,
                    InputFormat.PPTX,
                ],
                format_options={
                    InputFormat.PDF: PdfFormatOption(
                        pipeline_options=pipeline_options,
                    ),
                    InputFormat.DOCX: WordFormatOption(
                        pipeline_cls=SimplePipeline
                    )
                }
            )
            # Convert document
            print("Starting conversion...")
            conv_result = converter.convert(temp_input)
            if not conv_result or not conv_result.document:
                raise ValueError(f"Failed to convert document: {doc_path}")
            # Export to markdown
            print("Exporting to markdown...")
            md = conv_result.document.export_to_markdown()
            # Create output path
            output_dir = os.path.dirname(input_path)
            base_name = os.path.splitext(os.path.basename(input_path))[0]
            md_path = os.path.join(output_dir, f"{base_name}_converted.md")
            # Write markdown file
            print(f"Writing markdown to: {base_name}_converted.md")
            with open(md_path, "w", encoding="utf-8") as fp:
                fp.write(md)
            return md_path
    except Exception as e:
        return f"Error converting document: {str(e)}"

# Function to download file from URL
def download_file_from_url(url: str) -> Optional[str]:
    """Download a file from a URL and save it temporarily"""
    try:
        # Parse URL to get filename
        parsed_url = urlparse(url)
        filename = os.path.basename(parsed_url.path)
        
        if not filename:
            filename = "downloaded_document"
            
        # Add extension based on Content-Type if needed
        response = requests.get(url, stream=True)
        response.raise_for_status()
        
        content_type = response.headers.get('Content-Type', '')
        if 'pdf' in content_type:
            if not filename.lower().endswith('.pdf'):
                filename += ".pdf"
        elif 'word' in content_type or 'docx' in content_type:
            if not filename.lower().endswith(('.doc', '.docx')):
                filename += ".docx"
        elif 'powerpoint' in content_type or 'pptx' in content_type:
            if not filename.lower().endswith(('.ppt', '.pptx')):
                filename += ".pptx"
        elif 'html' in content_type:
            if not filename.lower().endswith(('.html', '.htm')):
                filename += ".html"
                
        # Create a temporary file
        temp_dir = tempfile.gettempdir()
        file_path = os.path.join(temp_dir, filename)
        
        # Save the file
        with open(file_path, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
                
        return file_path
    except Exception as e:
        print(f"Error downloading file: {str(e)}")
        return None

# Function to generate a summary using the IBM Granite model
def generate_summary(chunks: List[Document], model, tokenizer, summary_type="abstractive", detail_level="medium", length="medium"):
    """Generate a summary from document chunks using the IBM Granite model"""
    # Concatenate the retrieved chunks
    combined_text = " ".join([chunk.page_content for chunk in chunks])
    
    # Create a prompt based on the summary parameters
    if summary_type == "extractive":
        summary_instruction = "Extract the key sentences from the text to create a summary."
    else:  # abstractive
        summary_instruction = "Generate a comprehensive summary in your own words."
    
    if detail_level == "high":
        detail_instruction = "Include specific details and examples."
    elif detail_level == "medium":
        detail_instruction = "Balance key points with some supporting details."
    else:  # low
        detail_instruction = "Focus only on the main points and key takeaways."
    
    if length == "short":
        length_instruction = "Keep the summary concise and brief."
    elif length == "medium":
        length_instruction = "Create a moderate-length summary."
    else:  # long
        length_instruction = "Provide a comprehensive, detailed summary."
    
    # Construct the full prompt
    prompt = f"""<instruction>
    You are a document summarization assistant. Based on the following text, {summary_instruction} {detail_instruction} {length_instruction}
    </instruction>
    
    <text>
    {combined_text}
    </text>
    """
    
    # Generate the summary using the IBM Granite model
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    with torch.no_grad():
        output = model.generate(
            **inputs,
            max_new_tokens=1024,
            temperature=0.7,
            top_p=0.9,
            do_sample=True
        )
    
    # Decode and return the generated summary
    summary = tokenizer.decode(output[0], skip_special_tokens=True)
    
    # Extract just the generated response (after the prompt)
    summary = summary[len(tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)):]
    
    return summary.strip()

# Function to summarize a full document
def summarize_full_document(retriever, model, tokenizer, summary_params, chunk_size=8):
    """Summarize an entire document by processing all chunks"""
    all_chunks = []
    
    # Get all documents from the vector store
    for i in range(0, len(retriever.vectorstore.index_to_docstore_id), chunk_size):
        batch_ids = list(retriever.vectorstore.index_to_docstore_id.values())[i:i+chunk_size]
        batch_chunks = [retriever.vectorstore.docstore.search(doc_id) for doc_id in batch_ids]
        all_chunks.extend(batch_chunks)
    
    # Process chunks in manageable batches if needed
    summaries = []
    for i in range(0, len(all_chunks), chunk_size):
        batch = all_chunks[i:i+chunk_size]
        summary = generate_summary(
            batch,
            model,
            tokenizer,
            summary_type=summary_params.get("summary_type", "abstractive"),
            detail_level=summary_params.get("detail_level", "medium"),
            length=summary_params.get("length", "medium")
        )
        summaries.append(summary)
    
    # Create final summary from batch summaries if needed
    if len(summaries) > 1:
        final_summary = generate_summary(
            [Document(page_content=s) for s in summaries],
            model,
            tokenizer,
            summary_type=summary_params.get("summary_type", "abstractive"),
            detail_level=summary_params.get("detail_level", "medium"),
            length=summary_params.get("length", "medium")
        )
        return final_summary
    else:
        return summaries[0] if summaries else "No content to summarize"

# Main function to process document and generate summary
@spaces.GPU
def process_document(
    file_obj: Optional[Union[str, tempfile._TemporaryFileWrapper]] = None,
    url: Optional[str] = None,
    summary_type: str = "abstractive",
    detail_level: str = "medium",
    length: str = "medium",
    progress=gr.Progress()
):
    """Process a document file or URL and generate a summary"""
    try:
        # Process input source (file or URL)
        document_path = None
        if file_obj:
            document_path = file_obj.name if hasattr(file_obj, 'name') else str(file_obj)
        elif url and url.strip():
            progress(0.2, "Downloading document from URL...")
            document_path = download_file_from_url(url.strip())
            if not document_path:
                return "Failed to download document from URL. Please check the URL and try again."
        else:
            return "Please provide either a file or a URL to summarize."
        
        # Convert document to markdown
        progress(0.3, "Converting document to markdown...")
        markdown_path = convert_document_to_markdown(document_path)
        if markdown_path.startswith("Error"):
            return markdown_path
        
        # Load and split the document
        progress(0.4, "Loading and splitting document...")
        loader = UnstructuredMarkdownLoader(str(markdown_path))
        documents = loader.load()
        
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=500,
            chunk_overlap=50,
            length_function=len
        )
        texts = text_splitter.split_documents(documents)
        
        if not texts:
            return "No text could be extracted from the document."
        
        # Create embeddings and vector store
        progress(0.6, "Creating document embeddings...")
        embeddings = HuggingFaceEmbeddings(
            model_name="nomic-ai/nomic-embed-text-v1", 
            model_kwargs={'trust_remote_code': True}
        )
        vectorstore = FAISS.from_documents(texts, embeddings)
        
        # Create retriever
        retriever = vectorstore.as_retriever(
            search_type="similarity",
            search_kwargs={"k": 4}
        )
        
        # Generate summary
        progress(0.8, "Generating summary...")
        summary_params = {
            "summary_type": summary_type,
            "detail_level": detail_level,
            "length": length
        }
        summary = summarize_full_document(retriever, model, tokenizer, summary_params)
        
        progress(1.0, "Summary complete!")
        return summary
    
    except Exception as e:
        return f"Error processing document: {str(e)}"

# Create Gradio interface
def create_gradio_interface():
    """Create and launch the Gradio interface"""
    with gr.Blocks(title="Document Summarizer") as app:
        gr.Markdown("# Document Summarizer")
        gr.Markdown("Upload a document or provide a URL to generate a summary.")
        
        with gr.Row():
            with gr.Column():
                file_input = gr.File(label="Upload Document (PDF, DOCX, PPTX, HTML)")
                url_input = gr.Textbox(label="Or enter document URL")
                
                with gr.Row():
                    with gr.Column():
                        summary_type = gr.Radio(
                            choices=["extractive", "abstractive"],
                            value="abstractive",
                            label="Summary Type"
                        )
                
                with gr.Row():
                    with gr.Column():
                        detail_level = gr.Radio(
                            choices=["low", "medium", "high"],
                            value="medium",
                            label="Level of Detail"
                        )
                    
                    with gr.Column():
                        length = gr.Radio(
                            choices=["short", "medium", "long"],
                            value="medium",
                            label="Summary Length"
                        )
                
                submit_btn = gr.Button("Generate Summary", variant="primary")
            
            with gr.Column():
                output = gr.Textbox(
                    label="Summary Result",
                    lines=15,
                    max_lines=30
                )
        
        submit_btn.click(
            fn=process_document,
            inputs=[file_input, url_input, summary_type, detail_level, length],
            outputs=output
        )
        
        gr.Markdown("""
        ## How to use:
        1. Upload a document (PDF, DOCX, PPTX, HTML) or provide a URL
        2. Choose your preferred summary parameters:
           - Summary Type: Extractive (pulls key sentences) or Abstractive (generates new text)
           - Level of Detail: Low, Medium, or High
           - Summary Length: Short, Medium, or Long
        3. Click "Generate Summary" to process the document
        """)
    
    return app

# Launch the application
if __name__ == "__main__":
    app = create_gradio_interface()
    app.launch()