Patent_Retrieval / cross_encoder_reranking_train.py
darpanaswal's picture
Update cross_encoder_reranking_train.py
d0f5aa3 verified
raw
history blame
18.8 kB
import os
import json
import argparse
import numpy as np
import torch
import torch.nn.functional as F
from tqdm import tqdm
from torch import Tensor
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModel
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics.pairwise import cosine_similarity
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load embedder once
embedder = SentenceTransformer("sentence-transformers/all-mpnet-base-v2").to(device)
def embed_text_list(texts):
return embedder.encode(texts, convert_to_tensor=False, device=device)
def rank_by_centrality(texts):
embeddings = embed_text_list(texts)
similarity_matrix = cosine_similarity(embeddings)
centrality_scores = similarity_matrix.mean(axis=1)
ranked = sorted(zip(texts, centrality_scores), key=lambda x: x[1], reverse=True)
return [text for text, _ in ranked]
def cluster_and_rank(texts, threshold=0.75):
if len(texts) <= 3:
return texts # Nothing to reduce
embeddings = embed_text_list(texts)
clustering = AgglomerativeClustering(n_clusters=None, distance_threshold=1-threshold, metric = "cosine", linkage='average')
labels = clustering.fit_predict(embeddings)
clustered_texts = {}
for label, text in zip(labels, texts):
clustered_texts.setdefault(label, []).append(text)
representative_texts = []
for cluster_texts in clustered_texts.values():
ranked = rank_by_centrality(cluster_texts)
representative_texts.append(ranked[0]) # Choose most central per cluster
return representative_texts
def process_single_patent(patent_dict):
claims = [v for k, v in patent_dict.items() if k.startswith("c-en")]
paragraphs = [v for k, v in patent_dict.items() if k.startswith("p")]
features = [v for k, v in patent_dict.get("features", {}).items()]
# Cluster & rank
top_claims = cluster_and_rank(claims)
top_paragraphs = cluster_and_rank(paragraphs)
top_features = cluster_and_rank(features)
return {
"claims": rank_by_centrality(top_claims),
"paragraphs": rank_by_centrality(top_paragraphs),
"features": rank_by_centrality(top_features),
}
def refined_process_single_patent(patent_dict, top_n=10):
abstract = patent_dict.get("pa01", "")
title = patent_dict.get("title", "")
context = f"{title} {abstract}"
context_emb = embed_text_list([context])[0]
claims = [v for k, v in patent_dict.items() if k.startswith("c-en")]
paragraphs = [v for k, v in patent_dict.items() if k.startswith("p")]
features = [v for k, v in patent_dict.get("features", {}).items()]
def semantic_rank(items, context_emb):
embeddings = embed_text_list(items)
scores = cosine_similarity([context_emb], embeddings)[0]
ranked_items = [item for item, _ in sorted(zip(items, scores), key=lambda x: x[1], reverse=True)]
return ranked_items
return {
"claims": semantic_rank(claims, context_emb)[:top_n],
"paragraphs": semantic_rank(paragraphs, context_emb)[:top_n],
"features": semantic_rank(features, context_emb)[:top_n],
}
def load_json_file(file_path):
"""Load JSON data from a file"""
with open(file_path, 'r') as f:
return json.load(f)
def save_json_file(data, file_path):
"""Save data to a JSON file"""
with open(file_path, 'w') as f:
json.dump(data, f, indent=2)
def load_content_data(file_path):
"""Load content data from a JSON file"""
with open(file_path, 'r') as f:
data = json.load(f)
# Create a dictionary mapping FAN to Content
content_dict = {item['FAN']: item['Content'] for item in data}
return content_dict
def extract_text(content_dict, text_type="full"):
"""Extract text from patent content based on text_type"""
if text_type == "TA" or text_type == "title_abstract":
# Extract title and abstract
title = content_dict.get("title", "")
abstract = content_dict.get("pa01", "")
return f"{title} {abstract}".strip()
elif text_type == "claims":
# Extract all claims (keys starting with 'c')
claims = []
for key, value in content_dict.items():
if key.startswith('c-'):
claims.append(value)
return " ".join(claims)
elif text_type == "tac1":
# Extract title, abstract, and first claim
title = content_dict.get("title", "")
abstract = content_dict.get("pa01", "")
# Find the first claim safely
first_claim = ""
for key, value in content_dict.items():
if key.startswith('c-'):
first_claim = value
break
return f"{title} {abstract} {first_claim}".strip()
elif text_type == "description":
# Extract all paragraphs (keys starting with 'p')
paragraphs = []
for key, value in content_dict.items():
if key.startswith('p'):
paragraphs.append(value)
return " ".join(paragraphs)
elif text_type == "full":
# Extract everything
all_text = []
# Start with title and abstract for better context at the beginning
if "title" in content_dict:
all_text.append(content_dict["title"])
if "pa01" in content_dict:
all_text.append(content_dict["pa01"])
# Add claims and description
for key, value in content_dict.items():
if key != "title" and key != "pa01":
all_text.append(value)
return " ".join(all_text)
elif text_type == "smart":
filtered_dict = process_single_patent(content_dict)
all_text = []
# Start with abstract for better context at the beginning
if "pa01" in content_dict:
all_text.append(content_dict["pa01"])
# For claims, paragraphs and features, we take only the top-10 most relevant
# Add claims
for claim in filtered_dict["claims"][:10]:
all_text.append(claim)
# Add paragraphs
for paragraph in filtered_dict["paragraphs"][:10]:
all_text.append(paragraph)
# Add features
for feature in filtered_dict["features"][:10]:
all_text.append(feature)
return " ".join(all_text)
elif text_type == "smart2":
filtered_dict = refined_process_single_patent(content_dict)
all_text = []
# Context with title and abstract
if "title" in content_dict:
all_text.append(content_dict["title"])
if "pa01" in content_dict:
all_text.append(content_dict["pa01"])
# Add claims, paragraphs, and features
all_text.extend(filtered_dict["claims"])
all_text.extend(filtered_dict["paragraphs"])
all_text.extend(filtered_dict["features"])
return " ".join(all_text)
return ""
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
"""Extract the last token representations for pooling"""
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
# def get_detailed_instruct(task_description: str, query: str) -> str:
# """Create an instruction-formatted query"""
# return f'Instruct: {task_description}\nQuery: {query}'
def get_detailed_instruct(task_description: str, query: str) -> str:
return (
f"Instruct: Evaluate the semantic and technical similarity between two patent documents."
f" Prioritize highly similar claims, technical implementations, and shared functionalities."
f"\nQuery: {query}"
)
def hybrid_score(cross_encoder_score, semantic_score, weight_cross=0.7, weight_semantic=0.3):
return (weight_cross * cross_encoder_score) + (weight_semantic * semantic_score)
# def cross_encoder_reranking(query_text, doc_texts, model, tokenizer, batch_size=8, max_length=2048):
# """
# Rerank document texts based on query text using cross-encoder model
# Parameters:
# query_text (str): The query text
# doc_texts (list): List of document texts
# model: The cross-encoder model
# tokenizer: The tokenizer for the model
# batch_size (int): Batch size for processing
# max_length (int): Maximum sequence length
# Returns:
# list: Indices of documents sorted by relevance score (descending)
# """
# device = next(model.parameters()).device
# scores = []
# # Format query with instruction
# task_description = 'Re-rank a set of retrieved patents based on their relevance to a given query patent. The task aims to refine the order of patents by evaluating their semantic similarity to the query patent, ensuring that the most relevant patents appear at the top of the list.'
# instructed_query = get_detailed_instruct(task_description, query_text)
# # Process in batches to avoid OOM
# for i in tqdm(range(0, len(doc_texts), batch_size), desc="Scoring documents", leave=False):
# batch_docs = doc_texts[i:i+batch_size]
# # Prepare input pairs for the batch
# input_texts = [instructed_query] + batch_docs
# # Tokenize
# with torch.no_grad():
# batch_dict = tokenizer(input_texts, max_length=max_length, padding=True,
# truncation=True, return_tensors='pt').to(device)
# # Get embeddings
# outputs = model(**batch_dict)
# embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# # Normalize embeddings
# embeddings = F.normalize(embeddings, p=2, dim=1)
# # Calculate similarity scores between query and documents
# batch_scores = (embeddings[0].unsqueeze(0) @ embeddings[1:].T).squeeze(0) * 100
# scores.extend(batch_scores.cpu().tolist())
# # Create list of (index, score) tuples for sorting
# indexed_scores = list(enumerate(scores))
# # Sort by score in descending order
# indexed_scores.sort(key=lambda x: x[1], reverse=True)
# # Return sorted indices
# return [idx for idx, _ in indexed_scores]
def cross_encoder_reranking(query_text, doc_texts, model, tokenizer, batch_size=64, max_length=2048):
device = next(model.parameters()).device
cross_scores = []
query_emb = embed_text_list([query_text])[0]
instructed_query = get_detailed_instruct("", query_text)
for i in tqdm(range(0, len(doc_texts), batch_size), desc="Scoring documents", leave=False):
batch_docs = doc_texts[i:i+batch_size]
input_texts = [instructed_query] + batch_docs
with torch.no_grad():
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt').to(device)
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
batch_cross_scores = (embeddings[0].unsqueeze(0) @ embeddings[1:].T).squeeze(0).cpu().numpy()
cross_scores.extend(batch_cross_scores)
# Semantic scores
doc_embeddings = embed_text_list(doc_texts)
semantic_scores = cosine_similarity([query_emb], doc_embeddings)[0]
# Hybrid scores
hybrid_scores = [hybrid_score(c, s) for c, s in zip(cross_scores, semantic_scores)]
indexed_scores = list(enumerate(hybrid_scores))
indexed_scores.sort(key=lambda x: x[1], reverse=True)
return [idx for idx, _ in indexed_scores]
def main():
base_directory = os.getcwd()
base_directory += "/Patent_Retrieval"
parser = argparse.ArgumentParser(description='Re-rank patents using cross-encoder scoring (training queries only)')
parser.add_argument('--pre_ranking', type=str, default='shuffled_pre_ranking.json',
help='Path to pre-ranking JSON file')
parser.add_argument('--output', type=str, default='predictions2.json',
help='Path to output re-ranked JSON file')
parser.add_argument('--queries_content', type=str,
default='./queries_content_with_features.json',
help='Path to queries content JSON file')
parser.add_argument('--documents_content', type=str,
default='./documents_content_with_features.json',
help='Path to documents content JSON file')
parser.add_argument('--queries_list', type=str, default='test_queries.json',
help='Path to training queries JSON file')
parser.add_argument('--text_type', type=str, default='TA',
choices=['TA', 'claims', 'description', 'full', 'tac1', 'smart', 'smart2'],
help='Type of text to use for scoring')
parser.add_argument('--model_name', type=str, default='intfloat/e5-large-v2',
help='Name of the cross-encoder model')
parser.add_argument('--batch_size', type=int, default=4,
help='Batch size for scoring')
parser.add_argument('--max_length', type=int, default=512,
help='Maximum sequence length')
parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu',
help='Device to use (cuda/cpu)')
parser.add_argument('--base_dir', type=str,
default=f'{base_directory}/datasets',
help='Base directory for data files')
args = parser.parse_args()
# Ensure all paths are relative to base_dir if they're not absolute
def get_full_path(path):
if os.path.isabs(path):
return path
return os.path.join(args.base_dir, path)
# Load training queries
print(f"Loading training queries from {args.queries_list}...")
queries_list = load_json_file(get_full_path(args.queries_list))
print(f"Loaded {len(queries_list)} training queries")
# Load pre-ranking data
print(f"Loading pre-ranking data from {args.pre_ranking}...")
pre_ranking = load_json_file(get_full_path(args.pre_ranking))
# Filter pre-ranking to include only training queries
pre_ranking = {fan: docs for fan, docs in pre_ranking.items() if fan in queries_list}
print(f"Filtered pre-ranking to {len(pre_ranking)} training queries")
# Load content data
print(f"Loading query content from {args.queries_content}...")
queries_content = load_content_data(get_full_path(args.queries_content))
print(f"Loading document content from {args.documents_content}...")
documents_content = load_content_data(get_full_path(args.documents_content))
# Load model and tokenizer
print(f"Loading model {args.model_name}...")
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
model = AutoModel.from_pretrained(args.model_name).to(args.device)
model.eval()
# Process each query and re-rank its documents
print("Starting re-ranking process for training queries...")
re_ranked = {}
missing_query_fans = []
missing_doc_fans = {}
for query_fan, pre_ranked_docs in tqdm(pre_ranking.items(), desc="Processing queries"):
# Check if query FAN exists in our content data
if query_fan not in queries_content:
missing_query_fans.append(query_fan)
continue
# Extract query text
query_text = extract_text(queries_content[query_fan], args.text_type)
if not query_text:
missing_query_fans.append(query_fan)
continue
# Prepare document texts and keep track of their fans
doc_texts = []
doc_fans = []
missing_docs_for_query = []
for doc_fan in pre_ranked_docs:
if doc_fan not in documents_content:
missing_docs_for_query.append(doc_fan)
continue
doc_text = extract_text(documents_content[doc_fan], args.text_type)
if doc_text:
doc_texts.append(doc_text)
doc_fans.append(doc_fan)
# Keep track of missing documents
if missing_docs_for_query:
missing_doc_fans[query_fan] = missing_docs_for_query
# Skip if no valid documents
if not doc_texts:
re_ranked[query_fan] = []
continue
# Re-rank documents
print(f"\nRe-ranking {len(doc_texts)} documents for training query {query_fan}")
# Print some of the original pre-ranking order for debugging
print(f"Original pre-ranking (first 3): {doc_fans[:3]}")
# Use cross-encoder model for reranking
sorted_indices = cross_encoder_reranking(
query_text, doc_texts, model, tokenizer,
batch_size=args.batch_size, max_length=args.max_length
)
re_ranked[query_fan] = [doc_fans[i] for i in sorted_indices]
# Report any missing FANs
if missing_query_fans:
print(f"Warning: {len(missing_query_fans)} query FANs were not found in the content data")
if missing_doc_fans:
total_missing = sum(len(docs) for docs in missing_doc_fans.values())
print(f"Warning: {total_missing} document FANs were not found in the content data")
# Save re-ranked results
output_path = get_full_path(args.output)
print(f"Saving re-ranked results to {output_path}...")
save_json_file(re_ranked, output_path)
print("Re-ranking complete!")
print(f"Number of training queries processed: {len(re_ranked)}")
# Optionally save the missing FANs information for debugging
if missing_query_fans or missing_doc_fans:
missing_info = {
"missing_query_fans": missing_query_fans,
"missing_doc_fans": missing_doc_fans
}
missing_info_path = f"{os.path.splitext(output_path)[0]}_missing_fans.json"
save_json_file(missing_info, missing_info_path)
print(f"Information about missing FANs saved to {missing_info_path}")
if __name__ == "__main__":
main()