File size: 18,073 Bytes
3b98ef0
 
4d1a2d7
3b98ef0
 
 
 
4d1a2d7
3b98ef0
 
4d1a2d7
3b98ef0
 
a0a8763
3b98ef0
19561c9
44d07af
10e48ed
3b98ef0
 
d807d27
 
 
 
 
 
3b98ef0
 
 
 
 
 
 
 
101821f
a0e2313
 
3b98ef0
 
92e8f21
 
3b98ef0
 
 
 
 
 
 
 
 
 
 
 
 
10e48ed
 
 
 
 
 
3b98ef0
 
 
 
 
 
 
 
 
 
 
 
ec30c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b98ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9ccf3d
 
 
 
 
0a92332
4202987
 
37169a9
f9ccf3d
f8a16e0
 
 
 
 
 
37169a9
f8a16e0
3b98ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a33eb6
 
c9f0444
 
3b98ef0
 
 
 
 
 
 
 
 
 
 
 
ec30c35
 
3b98ef0
 
 
0aa7730
 
 
 
 
 
 
 
3b98ef0
 
ec30c35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c1b709
 
 
ec30c35
 
3b98ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4bffe5
 
 
3836d32
b4bffe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b98ef0
b4bffe5
 
3b98ef0
b4bffe5
3b98ef0
b4bffe5
 
 
3b98ef0
b4bffe5
 
3b98ef0
b4bffe5
 
 
 
3b98ef0
b4bffe5
 
3a53014
3b98ef0
b4bffe5
 
3b98ef0
b4bffe5
 
 
3b98ef0
b4bffe5
 
3b98ef0
b4bffe5
fd6b733
b4bffe5
 
3b98ef0
 
 
0bc2c49
10e48ed
3b98ef0
 
 
19e7ebd
3b98ef0
 
 
 
 
 
 
b4bffe5
 
f2bf451
3b98ef0
 
f8a16e0
3b98ef0
 
 
 
 
 
 
 
 
 
10e48ed
3b98ef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4bffe5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import os
import json
import torch
import argparse
import numpy as np
from tqdm import tqdm
from torch import Tensor
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
from sklearn.cluster import AgglomerativeClustering
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity

device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load embedder once
embedder = SentenceTransformer("all-MiniLM-L6-v2").to(device)
# embedder = SentenceTransformer("AI-Growth-Lab/PatentSBERTa").to(device)


def embed_text_list(texts):
    return embedder.encode(texts, convert_to_tensor=False, device=device)

# def embed_text_list(texts):
#     # E5 models expect "query: " prefix for proper embedding behavior
#     formatted_texts = [f"query: {text}" for text in texts]
#     return embedder.encode(formatted_texts, convert_to_tensor=False, device=device)

def rank_by_centrality(texts):
    embeddings = embed_text_list(texts)
    similarity_matrix = cosine_similarity(embeddings)
    centrality_scores = similarity_matrix.mean(axis=1)
    ranked = sorted(zip(texts, centrality_scores), key=lambda x: x[1], reverse=True)
    return [text for text, _ in ranked]

def cluster_and_rank(texts, threshold=0.75):
    if len(texts) < 2:
        return texts 

    embeddings = embed_text_list(texts)
    clustering = AgglomerativeClustering(n_clusters=None, distance_threshold=1-threshold, metric = "cosine", linkage='average')
    labels = clustering.fit_predict(embeddings)
    
    clustered_texts = {}
    for label, text in zip(labels, texts):
        clustered_texts.setdefault(label, []).append(text)
    
    representative_texts = []
    for cluster_texts in clustered_texts.values():
        ranked = rank_by_centrality(cluster_texts)
        representative_texts.append(ranked[0])  # Choose most central per cluster

    return representative_texts

def process_single_patent(patent_dict):
    def filter_short_texts(texts, min_tokens=5):
        return [text for text in texts if len(text.split()) >= min_tokens]

    claims = filter_short_texts([v for k, v in patent_dict.items() if k.startswith("c-en")])
    paragraphs = filter_short_texts([v for k, v in patent_dict.items() if k.startswith("p")])
    features = filter_short_texts([v for k, v in patent_dict.get("features", {}).items()])

    # Cluster & rank
    top_claims = cluster_and_rank(claims)
    top_paragraphs = cluster_and_rank(paragraphs)
    top_features = cluster_and_rank(features)

    return {
        "claims": rank_by_centrality(top_claims),
        "paragraphs": rank_by_centrality(top_paragraphs),
        "features": rank_by_centrality(top_features),
    }

def process_single_patent2(patent_dict):
    def filter_short_texts(texts, min_tokens=5):
        return [text for text in texts if len(text.split()) >= min_tokens]

    # Filter short texts
    claims = filter_short_texts([v for k, v in patent_dict.items() if k.startswith("c-en")])
    paragraphs = filter_short_texts([v for k, v in patent_dict.items() if k.startswith("p")])
    features = filter_short_texts([v for k, v in patent_dict.get("features", {}).items()])

    # Re-rank claims and features directly
    ranked_claims = rank_by_centrality(claims)
    ranked_features = rank_by_centrality(features)

    # Only filter (cluster + rank) for paragraphs
    filtered_paragraphs = cluster_and_rank(paragraphs)
    ranked_paragraphs = rank_by_centrality(filtered_paragraphs)

    return {
        "claims": ranked_claims,
        "paragraphs": ranked_paragraphs,
        "features": ranked_features,
    }

def load_json_file(file_path):
    """Load JSON data from a file"""
    with open(file_path, 'r') as f:
        return json.load(f)

def save_json_file(data, file_path):
    """Save data to a JSON file"""
    with open(file_path, 'w') as f:
        json.dump(data, f, indent=2)

def load_content_data(file_path):
    """Load content data from a JSON file"""
    with open(file_path, 'r') as f:
        data = json.load(f)
    
    # Create a dictionary mapping FAN to Content
    content_dict = {item['FAN']: item['Content'] for item in data}
    return content_dict

def extract_text(content_dict, text_type="full"):
    """Extract text from patent content based on text_type"""
    if text_type == "TA" or text_type == "title_abstract":
        # Extract title and abstract                                                
        title = content_dict.get("title", "")
        abstract = content_dict.get("pa01", "")
        return f"{title} {abstract}".strip()
    
    elif text_type == "claims":
        # Extract all claims (keys starting with 'c')
        claims = []
        for key, value in content_dict.items():
            if key.startswith('c-'):
                claims.append(value)
        return " ".join(claims)

    elif text_type == "claimfeat":
        # Extract all claims (keys starting with 'c')
        content = []
        for key, value in content_dict.items():
            if key.startswith('c-'):
                content.append(value)
            if key == "features":
                content += list(content_dict[key].values())
        return " ".join(content)

    elif text_type == "feat":
        # Extract all claims (keys starting with 'c')
        content = []
        for key, value in content_dict.items():
            if key == "features":
                content += list(content_dict[key].values())
        return " ".join(content)

    elif text_type == "tac1":
        # Extract title, abstract, and first claim
        title = content_dict.get("title", "")
        abstract = content_dict.get("pa01", "")
        # Find the first claim safely
        first_claim = ""
        for key, value in content_dict.items():
            if key.startswith('c-'):
                first_claim = value
                break
        return f"{title} {abstract} {first_claim}".strip()
    
    elif text_type == "description":
        # Extract all paragraphs (keys starting with 'p')
        paragraphs = []
        for key, value in content_dict.items():
            if key.startswith('p'):
                paragraphs.append(value)
        return " ".join(paragraphs)
    
    elif text_type == "full":
        # Extract everything
        all_text = []
        # Start with title and abstract for better context at the beginning
        # if "title" in content_dict:
        #     all_text.append(content_dict["title"])
        # if "pa01" in content_dict:
        #     all_text.append(content_dict["pa01"])
            
        # Add claims and description
        for key, value in content_dict.items():
            if key != "title" and key != "pa01":
                all_text.append(value)
                
        return " ".join(all_text)
    
    elif text_type == "smart":
        filtered_dict = process_single_patent(content_dict)
        all_text = []
        # Start with abstract for better context at the beginning
        if "pa01" in content_dict:
            all_text.append(content_dict["pa01"])

        # For claims, paragraphs and features, we take only the top-10 most relevant
        # Add claims
        # for claim in filtered_dict["claims"][:10]:
        #     all_text.append(claim)
        # # Add features
        # for feature in filtered_dict["features"][:10]:
        #     all_text.append(feature)
        # Add paragraphs
        for paragraph in filtered_dict["paragraphs"][:10]:
            all_text.append(paragraph)
        
        return " ".join(all_text)

    elif text_type == "smart2":
        filtered_dict = process_single_patent2(content_dict)
        all_text = []
        # Start with abstract for better context at the beginning
        if "pa01" in content_dict:
            all_text.append(content_dict["pa01"])

        # For claims, paragraphs and features, we take only the top-10 most relevant
        # Add claims
        for claim in filtered_dict["claims"][:10]:
            all_text.append(claim)
        # Add features
        for feature in filtered_dict["features"][:10]:
            all_text.append(feature)
        # # Add paragraphs
        # for paragraph in filtered_dict["paragraphs"][:10]:
        #     all_text.append(paragraph)
        
        return " ".join(all_text)
    
    
    return ""

def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
    """Extract the last token representations for pooling"""
    left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
    if left_padding:
        return last_hidden_states[:, -1]
    else:
        sequence_lengths = attention_mask.sum(dim=1) - 1
        batch_size = last_hidden_states.shape[0]
        return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]

def get_detailed_instruct(task_description: str, query: str) -> str:
    """Create an instruction-formatted query"""
    return f'Instruct: {task_description}\nQuery: {query}'

def cross_encoder_reranking(query_text, doc_texts, model, tokenizer, batch_size=64, max_length=2048):
    """
    Rerank document texts based on query text using cross-encoder model
    
    Parameters:
    query_text (str): The query text
    doc_texts (list): List of document texts
    model: The cross-encoder model
    tokenizer: The tokenizer for the model
    batch_size (int): Batch size for processing
    max_length (int): Maximum sequence length
    
    Returns:
    list: Indices of documents sorted by relevance score (descending)
    """
    device = next(model.parameters()).device
    scores = []
    
    # Format query with instruction
    task_description = 'Re-rank a set of retrieved patents based on their relevance to a given query patent. The task aims to refine the order of patents by evaluating their semantic similarity to the query patent, ensuring that the most relevant patents appear at the top of the list.'

    instructed_query = get_detailed_instruct(task_description, query_text)
    
    # Process in batches to avoid OOM
    for i in tqdm(range(0, len(doc_texts), batch_size), desc="Scoring documents", leave=False):
        batch_docs = doc_texts[i:i+batch_size]
        
        # Prepare input pairs for the batch
        input_texts = [instructed_query] + batch_docs
        
        # Tokenize
        with torch.no_grad():
            batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, 
                                  truncation=True, return_tensors='pt').to(device)
            
            # Get embeddings
            outputs = model(**batch_dict)
            embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
            
            # Normalize embeddings
            embeddings = F.normalize(embeddings, p=2, dim=1)
            
            # Calculate similarity scores between query and documents
            batch_scores = (embeddings[0].unsqueeze(0) @ embeddings[1:].T).squeeze(0) * 100
            scores.extend(batch_scores.cpu().tolist())
    
    # Create list of (index, score) tuples for sorting
    indexed_scores = list(enumerate(scores))
    
    # Sort by score in descending order
    indexed_scores.sort(key=lambda x: x[1], reverse=True)
    
    # Return sorted indices
    return [idx for idx, _ in indexed_scores]

def main():
    base_directory = os.getcwd()
    base_directory += "/Patent_Retrieval"
    parser = argparse.ArgumentParser(description='Re-rank patents using cross-encoder scoring (training queries only)')
    parser.add_argument('--pre_ranking', type=str, default='shuffled_pre_ranking.json',
                        help='Path to pre-ranking JSON file')
    parser.add_argument('--output', type=str, default='prediction2.json',
                        help='Path to output re-ranked JSON file')
    parser.add_argument('--queries_content', type=str, 
                        default='./queries_content_with_features.json',
                        help='Path to queries content JSON file')
    parser.add_argument('--documents_content', type=str, 
                        default='./documents_content_with_features.json',
                        help='Path to documents content JSON file')

    # Change here for test or train
    parser.add_argument('--queries_list', type=str, default='test_queries.json',
                        help='Path to training queries JSON file')
    parser.add_argument('--text_type', type=str, default='TA',
                        choices=['TA', 'claims', 'description', 'full', 'tac1', 'smart', 'smart2', 'claimfeat', 'feat'],
                        help='Type of text to use for scoring')
    parser.add_argument('--model_name', type=str, default='intfloat/e5-large-v2', 
                        help='Name of the cross-encoder model')
    parser.add_argument('--batch_size', type=int, default=4,
                        help='Batch size for scoring')
    parser.add_argument('--max_length', type=int, default=512,
                        help='Maximum sequence length')
    parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu',
                        help='Device to use (cuda/cpu)')
    parser.add_argument('--base_dir', type=str, 
                        default=f'{base_directory}/datasets',
                        help='Base directory for data files')
    
    args = parser.parse_args()
    
    # Ensure all paths are relative to base_dir if they're not absolute
    def get_full_path(path):
        if os.path.isabs(path):
            return path
        return os.path.join(args.base_dir, path)
    
    # Load training queries
    print(f"Loading training queries from {args.queries_list}...")
    queries_list = load_json_file(get_full_path(args.queries_list))
    print(f"Loaded {len(queries_list)} training queries")
    
    # Load pre-ranking data
    print(f"Loading pre-ranking data from {args.pre_ranking}...")
    pre_ranking = load_json_file(get_full_path(args.pre_ranking))
    
    # Filter pre-ranking to include only training queries
    pre_ranking = {fan: docs for fan, docs in pre_ranking.items() if fan in queries_list}
    print(f"Filtered pre-ranking to {len(pre_ranking)} training queries")
    
    # Load content data
    print(f"Loading query content from {args.queries_content}...")
    queries_content = load_content_data(get_full_path(args.queries_content))
    
    print(f"Loading document content from {args.documents_content}...")
    documents_content = load_content_data(get_full_path(args.documents_content))
    
    # Load model and tokenizer
    print(f"Loading model {args.model_name}...")
    tokenizer = AutoTokenizer.from_pretrained(args.model_name)
    model = AutoModel.from_pretrained(args.model_name).to(args.device)
    model.eval()
    
    # Process each query and re-rank its documents
    print("Starting re-ranking process for training queries...")
    re_ranked = {}
    missing_query_fans = []
    missing_doc_fans = {}
    
    
    for query_fan, pre_ranked_docs in tqdm(pre_ranking.items(), desc="Processing queries"):
        # Check if query FAN exists in our content data
        if query_fan not in queries_content:
            missing_query_fans.append(query_fan)
            continue
        
        # Extract query text
        query_text = extract_text(queries_content[query_fan], args.text_type)
        if not query_text:
            missing_query_fans.append(query_fan)
            continue
            
        # Prepare document texts and keep track of their fans
        doc_texts = []
        doc_fans = []
        missing_docs_for_query = []
        
        for doc_fan in pre_ranked_docs:
            if doc_fan not in documents_content:
                missing_docs_for_query.append(doc_fan)
                continue
                
            doc_text = extract_text(documents_content[doc_fan], args.text_type)
            if doc_text:
                doc_texts.append(doc_text)
                doc_fans.append(doc_fan)
        
        # Keep track of missing documents
        if missing_docs_for_query:
            missing_doc_fans[query_fan] = missing_docs_for_query
            
        # Skip if no valid documents
        if not doc_texts:
            re_ranked[query_fan] = []
            continue
            
        # Re-rank documents
        print(f"\nRe-ranking {len(doc_texts)} documents for training query {query_fan}")
        
        # Print some of the original pre-ranking order for debugging
        print(f"Original pre-ranking (first 3): {doc_fans[:3]}")
        
        # Use cross-encoder model for reranking
        sorted_indices = cross_encoder_reranking(
            query_text, doc_texts, model, tokenizer, 
            batch_size=args.batch_size, max_length=args.max_length
        )
        re_ranked[query_fan] = [doc_fans[i] for i in sorted_indices]
    
    # Report any missing FANs
    if missing_query_fans:
        print(f"Warning: {len(missing_query_fans)} query FANs were not found in the content data")
    if missing_doc_fans:
        total_missing = sum(len(docs) for docs in missing_doc_fans.values())
        print(f"Warning: {total_missing} document FANs were not found in the content data")
    
    # Save re-ranked results
    output_path = get_full_path(args.output)
    print(f"Saving re-ranked results to {output_path}...")
    save_json_file(re_ranked, output_path)
    
    print("Re-ranking complete!")
    print(f"Number of training queries processed: {len(re_ranked)}")
    
    # Optionally save the missing FANs information for debugging
    if missing_query_fans or missing_doc_fans:
        missing_info = {
            "missing_query_fans": missing_query_fans,
            "missing_doc_fans": missing_doc_fans
        }
        missing_info_path = f"{os.path.splitext(output_path)[0]}_missing_fans.json"
        save_json_file(missing_info, missing_info_path)
        print(f"Information about missing FANs saved to {missing_info_path}")

if __name__ == "__main__":
    main()