Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from unsloth import FastLanguageModel
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
5 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
6 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
7 |
+
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
|
8 |
+
fourbit_models = [
|
9 |
+
"unsloth/mistral-7b-v0.3-bnb-4bit", # New Mistral v3 2x faster!
|
10 |
+
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
|
11 |
+
"unsloth/llama-3-8b-bnb-4bit", # Llama-3 15 trillion tokens model 2x faster!
|
12 |
+
"unsloth/llama-3-8b-Instruct-bnb-4bit",
|
13 |
+
"unsloth/llama-3-70b-bnb-4bit",
|
14 |
+
"unsloth/Phi-3-mini-4k-instruct", # Phi-3 2x faster!
|
15 |
+
"unsloth/Phi-3-medium-4k-instruct",
|
16 |
+
"unsloth/mistral-7b-bnb-4bit",
|
17 |
+
"unsloth/gemma-7b-bnb-4bit", # Gemma 2.2x faster!
|
18 |
+
] # More models at https://huggingface.co/unsloth
|
19 |
+
|
20 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
21 |
+
model_name = "danishmuhammad/ccat_2025_llama3.1_8B",
|
22 |
+
max_seq_length = max_seq_length,
|
23 |
+
dtype = dtype,
|
24 |
+
load_in_4bit = load_in_4bit,
|
25 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
26 |
+
)
|
27 |
+
FastLanguageModel.for_inference(model)
|
28 |
+
|
29 |
+
alpaca_prompt = """Below is an input that describes a question, answer the following question as clearly as possible. If additional context is needed, provide it briefly.
|
30 |
+
|
31 |
+
|
32 |
+
### Input:
|
33 |
+
{}
|
34 |
+
|
35 |
+
### Response:
|
36 |
+
{}"""
|
37 |
+
|
38 |
+
with gr.Blocks() as demo:
|
39 |
+
chatbot = gr.Chatbot(layout="bubble")
|
40 |
+
user_input = gr.Textbox()
|
41 |
+
clear = gr.ClearButton([user_input, chatbot])
|
42 |
+
|
43 |
+
def answers_chat(user_input,history):
|
44 |
+
history = history or []
|
45 |
+
formatted_input = alpaca_prompt.format(user_input, "")
|
46 |
+
inputs = tokenizer([formatted_input], return_tensors="pt").to("cuda")
|
47 |
+
|
48 |
+
# Generate response with adjusted parameters
|
49 |
+
outputs = model.generate(
|
50 |
+
**inputs,
|
51 |
+
max_new_tokens=512, # Increase to allow for longer responses
|
52 |
+
temperature=0.4, # Add temperature to introduce variation
|
53 |
+
repetition_penalty=1.2, # Penalize repeating tokens
|
54 |
+
no_repeat_ngram_size=3, # Avoid repeating sequences of 3 tokens
|
55 |
+
use_cache=True,
|
56 |
+
eos_token_id=tokenizer.eos_token_id
|
57 |
+
)
|
58 |
+
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
59 |
+
|
60 |
+
formatted_response = response[len(formatted_input):].strip()
|
61 |
+
|
62 |
+
history.append((user_input,formatted_response))
|
63 |
+
|
64 |
+
return "",history
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
user_input.submit(answers_chat, [user_input, chatbot], [user_input, chatbot])
|
70 |
+
|
71 |
+
|
72 |
+
demo.launch()
|