Spaces:
Sleeping
Sleeping
Commit
·
4939d74
1
Parent(s):
24cc0f4
require
Browse files- scripts/evaluate.py +10 -5
scripts/evaluate.py
CHANGED
@@ -1,19 +1,24 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
from datasets import load_dataset
|
3 |
from sklearn.metrics import accuracy_score, f1_score
|
4 |
|
5 |
# Load dataset
|
6 |
dataset = load_dataset("allocine")["test"]
|
|
|
7 |
|
8 |
-
# Load model
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Get predictions
|
12 |
-
predictions = [classifier(text["review"])[0]["label"] for text in dataset]
|
13 |
labels = dataset["label"]
|
14 |
|
15 |
# Convert labels
|
16 |
-
label_map = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2}
|
17 |
predictions = [label_map[p] for p in predictions]
|
18 |
|
19 |
# Compute metrics
|
|
|
1 |
+
from transformers import pipeline, AutoModelForSequenceClassification
|
2 |
from datasets import load_dataset
|
3 |
from sklearn.metrics import accuracy_score, f1_score
|
4 |
|
5 |
# Load dataset
|
6 |
dataset = load_dataset("allocine")["test"]
|
7 |
+
dataset["test"] = dataset["test"].select(range(5)) # Test on 200 samples
|
8 |
|
9 |
+
# Load model and tokenizer
|
10 |
+
model_path = "./models"
|
11 |
+
classifier = pipeline("text-classification", model=model_path, tokenizer=model_path)
|
12 |
+
|
13 |
+
# Get actual model labels
|
14 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
15 |
+
label_map = {v: k for k, v in model.config.label2id.items()} # Adjust dynamically
|
16 |
|
17 |
# Get predictions
|
18 |
+
predictions = [classifier(text["review"], truncation=True, max_length=512)[0]["label"] for text in dataset]
|
19 |
labels = dataset["label"]
|
20 |
|
21 |
# Convert labels
|
|
|
22 |
predictions = [label_map[p] for p in predictions]
|
23 |
|
24 |
# Compute metrics
|