File size: 10,413 Bytes
1e15feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c48847e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e15feb
 
c48847e
1e15feb
 
 
 
 
 
 
c48847e
 
1e15feb
 
 
 
 
 
 
c48847e
 
 
 
1e15feb
c48847e
 
 
 
 
1e15feb
 
 
 
 
 
 
c48847e
1e15feb
 
 
 
 
 
c48847e
1e15feb
 
c48847e
1e15feb
 
 
 
 
 
 
 
 
 
 
 
 
 
c48847e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e15feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "6a7a5d41-e6d7-4efa-a481-3182963ca888",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting gradio_client\n",
      "  Downloading gradio_client-1.3.0-py3-none-any.whl.metadata (7.1 kB)\n",
      "Requirement already satisfied: fsspec in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from gradio_client) (2024.6.1)\n",
      "Requirement already satisfied: httpx>=0.24.1 in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from gradio_client) (0.27.0)\n",
      "Collecting huggingface-hub>=0.19.3 (from gradio_client)\n",
      "  Downloading huggingface_hub-0.24.7-py3-none-any.whl.metadata (13 kB)\n",
      "Requirement already satisfied: packaging in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from gradio_client) (24.1)\n",
      "Requirement already satisfied: typing-extensions~=4.0 in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from gradio_client) (4.12.2)\n",
      "Requirement already satisfied: websockets<13.0,>=10.0 in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from gradio_client) (12.0)\n",
      "Requirement already satisfied: anyio in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from httpx>=0.24.1->gradio_client) (4.4.0)\n",
      "Requirement already satisfied: certifi in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from httpx>=0.24.1->gradio_client) (2024.7.4)\n",
      "Requirement already satisfied: httpcore==1.* in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from httpx>=0.24.1->gradio_client) (1.0.5)\n",
      "Requirement already satisfied: idna in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from httpx>=0.24.1->gradio_client) (3.7)\n",
      "Requirement already satisfied: sniffio in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from httpx>=0.24.1->gradio_client) (1.3.1)\n",
      "Requirement already satisfied: h11<0.15,>=0.13 in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from httpcore==1.*->httpx>=0.24.1->gradio_client) (0.14.0)\n",
      "Requirement already satisfied: filelock in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from huggingface-hub>=0.19.3->gradio_client) (3.15.4)\n",
      "Requirement already satisfied: pyyaml>=5.1 in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from huggingface-hub>=0.19.3->gradio_client) (6.0.1)\n",
      "Requirement already satisfied: requests in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from huggingface-hub>=0.19.3->gradio_client) (2.32.3)\n",
      "Requirement already satisfied: tqdm>=4.42.1 in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from huggingface-hub>=0.19.3->gradio_client) (4.66.5)\n",
      "Requirement already satisfied: exceptiongroup>=1.0.2 in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from anyio->httpx>=0.24.1->gradio_client) (1.2.2)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from requests->huggingface-hub>=0.19.3->gradio_client) (3.3.2)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/danielkovtun/mamba-m1/envs/pinder/lib/python3.10/site-packages (from requests->huggingface-hub>=0.19.3->gradio_client) (2.2.2)\n",
      "Downloading gradio_client-1.3.0-py3-none-any.whl (318 kB)\n",
      "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m318.7/318.7 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
      "\u001b[?25hDownloading huggingface_hub-0.24.7-py3-none-any.whl (417 kB)\n",
      "\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m417.5/417.5 kB\u001b[0m \u001b[31m11.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hInstalling collected packages: huggingface-hub, gradio_client\n",
      "Successfully installed gradio_client-1.3.0 huggingface-hub-0.24.7\n"
     ]
    }
   ],
   "source": [
    "!pip install gradio_client"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "549b9b2c-3074-446b-962e-90c8efd2bd59",
   "metadata": {},
   "source": [
    "# PINDER inference and evaluation template API examples"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b979671e-97d6-4c52-bc6e-279a09d722c8",
   "metadata": {},
   "source": [
    "## Run inference via predict endpoint"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "2c0171fa-ee2a-40b7-8578-aa8516b4ece9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loaded as API: https://danielkovtun-pinder-inference-template.hf.space/ βœ”\n",
      "/private/var/folders/tt/x223wxwj6dzg3vjjgc_6y5bm0000gn/T/gradio/0cda59c2805986a9e5956ed00cb552b3c86f05915da91e6e14a0a31b962e664b/3g9w_R--3g9w_L.pdb 1.2273471355438232\n"
     ]
    }
   ],
   "source": [
    "from gradio_client import Client, handle_file\n",
    "from pathlib import Path\n",
    "\n",
    "uri = \"https://danielkovtun-pinder-inference-template.hf.space/\"\n",
    "# If running docker container locally\n",
    "dev_uri = \"http://localhost:7860/\"\n",
    "client = Client(uri)\n",
    "result = client.predict(\n",
    "    receptor_pdb=handle_file(\"./3g9w_R.pdb\"),\n",
    "    ligand_pdb=handle_file(\"./3g9w_L.pdb\"),\n",
    "    receptor_fasta=None, # optional in this implementation\n",
    "    ligand_fasta=None,\n",
    "    api_name=\"/predict\"\n",
    ")\n",
    "output_pdb, runtime = Path(result[0]), result[1]\n",
    "print(output_pdb, runtime)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "c530fde1-7f57-4991-a53e-b3855657f9fc",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(PosixPath('pinder-inference-outputs/3g9w_R--3g9w_L.pdb'), True)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import shutil\n",
    "\n",
    "local_dir = Path(\"./pinder-inference-outputs\")\n",
    "local_dir.mkdir(exist_ok=True, parents=True)\n",
    "\n",
    "output_pdb = Path(shutil.copy(output_pdb, local_dir))\n",
    "output_pdb, output_pdb.is_file() \n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b3c1c03e-74c1-4010-b385-e4366d43cd6f",
   "metadata": {},
   "source": [
    "## Fetch evaluation metrics via evaluate endpoint"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "e5e26250-f20d-484d-84e2-320cdfef830a",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loaded as API: http://localhost:7860/ βœ”\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "{'headers': ['system', 'L_rms', 'I_rms', 'F_nat', 'DOCKQ', 'CAPRI_class'],\n",
       " 'data': [['3g9w__A1_Q71LX4--3g9w__D1_P05556',\n",
       "   34.781349182128906,\n",
       "   15.405366897583008,\n",
       "   0.0,\n",
       "   0.021916405918697517,\n",
       "   'Incorrect']],\n",
       " 'metadata': None}"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "client = Client(uri)\n",
    "result = client.predict(\n",
    "    system_id=\"3g9w__A1_Q71LX4--3g9w__D1_P05556\",\n",
    "    prediction_pdb=handle_file(\"3g9w_R--3g9w_L.pdb\"),\n",
    "    api_name=\"/evaluate\"\n",
    ")\n",
    "metrics, pred_native, runtime = result\n",
    "metrics"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "eef0d108-5d76-4bef-bd0c-4952d433ccaf",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>system</th>\n",
       "      <th>L_rms</th>\n",
       "      <th>I_rms</th>\n",
       "      <th>F_nat</th>\n",
       "      <th>DOCKQ</th>\n",
       "      <th>CAPRI_class</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>3g9w__A1_Q71LX4--3g9w__D1_P05556</td>\n",
       "      <td>34.781349</td>\n",
       "      <td>15.405367</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.021916</td>\n",
       "      <td>Incorrect</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                             system      L_rms      I_rms  F_nat     DOCKQ  \\\n",
       "0  3g9w__A1_Q71LX4--3g9w__D1_P05556  34.781349  15.405367    0.0  0.021916   \n",
       "\n",
       "  CAPRI_class  \n",
       "0   Incorrect  "
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pandas as pd\n",
    "\n",
    "metric_df = pd.DataFrame(metrics[\"data\"], columns=metrics[\"headers\"])\n",
    "metric_df"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "pinder",
   "language": "python",
   "name": "pinder"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}