Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import subprocess | |
import os | |
import sys | |
import soundfile as sf | |
import numpy as np | |
import torch | |
import traceback | |
import spaces | |
repo_url = "https://huggingface.co/dangtr0408/StyleTTS2-lite-vi" | |
repo_dir = "StyleTTS2-lite-vi" | |
if not os.path.exists(repo_dir): | |
subprocess.run(["git", "clone", repo_url, repo_dir]) | |
sys.path.append(os.path.abspath(repo_dir)) | |
from inference import StyleTTS2 | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
config_path = os.path.join(repo_dir, "Models", "config.yaml") | |
models_path = os.path.join(repo_dir, "Models", "model.pth") | |
model = StyleTTS2(config_path, models_path).eval().to(device) | |
voice_path = os.path.join(repo_dir, "reference_audio") | |
eg_voices = [os.path.join(voice_path,"vn_1.wav"), os.path.join(voice_path,"vn_2.wav")] | |
eg_texts = [ | |
"Chỉ với khoảng 90 triệu tham số, [en-us]{StyleTTS2-lite} có thể dễ dàng tạo giọng nói với tốc độ cao.", | |
"[id_1] Với [en-us]{StyleTTS2-lite} bạn có thể sử dụng [en-us]{language tag} để mô hình chắc chắn đọc bằng tiếng Anh, [id_2]cũng như sử dụng [en-us]{speaker tag} để chuyển đổi nhanh giữa các giọng đọc.", | |
] | |
# Core inference function | |
def main(reference_paths, text_prompt, denoise, avg_style, stabilize): | |
try: | |
speakers = {} | |
for i, path in enumerate(reference_paths, 1): | |
speaker_id = f"id_{i}" | |
speakers[speaker_id] = { | |
"path": path, | |
"lang": "vi", | |
"speed": 1.0 | |
} | |
with torch.no_grad(): | |
styles = model.get_styles(speakers, denoise, avg_style) | |
r = model.generate(text_prompt, styles, stabilize, 18, "[id_1]") | |
r = r / np.abs(r).max() | |
sf.write("output.wav", r, samplerate=24000) | |
return "output.wav", "Audio generated successfully!" | |
except Exception as e: | |
error_message = traceback.format_exc() | |
return None, error_message | |
def on_file_upload(file_list): | |
if not file_list: | |
return None, "No file uploaded yet." | |
unique_files = {} | |
for file_path in file_list: | |
file_name = os.path.basename(file_path) | |
unique_files[file_name] = file_path #update and remove duplicate | |
uploaded_infos = [] | |
uploaded_file_names = list(unique_files.keys()) | |
for i in range(len(uploaded_file_names)): | |
uploaded_infos.append(f"[id_{i+1}]: {uploaded_file_names[i]}") | |
summary = "\n".join(uploaded_infos) | |
return list(unique_files.values()), f"Current reference audios:\n{summary}" | |
def gen_example(reference_paths, text_prompt): | |
output, status = main(reference_paths, text_prompt, 0.6, True, True) | |
return output, reference_paths, status | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.HTML("<h1 style='text-align: center;'>StyleTTS2‑Lite Demo</h1>") | |
gr.Markdown( | |
"Download the local inference package from Hugging Face: " | |
"[StyleTTS2‑Lite (Vietnamese)]" | |
"(https://huggingface.co/dangtr0408/StyleTTS2-lite-vi/)." | |
) | |
gr.Markdown( | |
"Annotate any non‑Vietnamese words with the appropriate language tag, e.g., [en-us]{ } for English. For more information, see " | |
"[eSpeakNG docs]" | |
"(https://github.com/espeak-ng/espeak-ng/blob/master/docs/languages.md)" | |
) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=1): | |
text_prompt = gr.Textbox(label="Text Prompt", placeholder="Enter your text here...", lines=4) | |
with gr.Column(scale=1): | |
avg_style = gr.Checkbox(label="Use Average Styles", value=True) | |
stabilize = gr.Checkbox(label="Stabilize Speaking Speed", value=True) | |
denoise = gr.Slider(0.0, 1.0, step=0.1, value=0.6, label="Denoise Strength") | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=1): | |
reference_audios = gr.File(label="Reference Audios", file_types=[".wav", ".mp3"], file_count="multiple", height=150) | |
gen_button = gr.Button("Generate") | |
with gr.Column(scale=1): | |
synthesized_audio = gr.Audio(label="Generate Audio", type="filepath") | |
status = gr.Textbox(label="Status", interactive=False, lines=3) | |
reference_audios.change( | |
on_file_upload, | |
inputs=[reference_audios], | |
outputs=[reference_audios, status] | |
) | |
gen_button.click( | |
fn=main, | |
inputs=[ | |
reference_audios, | |
text_prompt, | |
denoise, | |
avg_style, | |
stabilize | |
], | |
outputs=[synthesized_audio, status] | |
) | |
gr.Examples( | |
examples=[[[eg_voices[0]], eg_texts[0]], [eg_voices, eg_texts[1]]], | |
inputs=[reference_audios, text_prompt], | |
outputs=[synthesized_audio, reference_audios, status], | |
fn=gen_example, | |
cache_examples=False, | |
label="Examples", | |
run_on_click=True | |
) | |
demo.launch() |