Spaces:
Runtime error
Runtime error
Damian Stewart
commited on
Commit
·
6dc9635
1
Parent(s):
5329ade
batching sample generation and cancellation support
Browse files
app.py
CHANGED
@@ -76,7 +76,7 @@ class Demo:
|
|
76 |
label="Seed",
|
77 |
value=42
|
78 |
)
|
79 |
-
with gr.Row(
|
80 |
self.img_width_infr = gr.Slider(
|
81 |
label="Image width",
|
82 |
minimum=256,
|
@@ -92,7 +92,7 @@ class Demo:
|
|
92 |
step=64
|
93 |
)
|
94 |
|
95 |
-
with gr.Row(
|
96 |
self.model_dropdown = gr.Dropdown(
|
97 |
label="ESD Model",
|
98 |
choices= list(model_map.keys()),
|
@@ -152,6 +152,15 @@ class Demo:
|
|
152 |
info="Image size for training, should match the model's native image size"
|
153 |
)
|
154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
self.prompt_input = gr.Text(
|
156 |
placeholder="Enter prompt...",
|
157 |
label="Prompt to Erase",
|
@@ -313,6 +322,7 @@ class Demo:
|
|
313 |
self.train_use_gradient_checkpointing_input,
|
314 |
self.train_seed_input,
|
315 |
self.train_save_every_input,
|
|
|
316 |
self.train_validation_prompts,
|
317 |
self.train_sample_positive_prompts,
|
318 |
self.train_sample_negative_prompts,
|
@@ -322,7 +332,8 @@ class Demo:
|
|
322 |
)
|
323 |
self.train_cancel_button.click(self.cancel_training,
|
324 |
inputs=[],
|
325 |
-
outputs=[self.train_cancel_button]
|
|
|
326 |
|
327 |
self.export_button.click(self.export, inputs = [
|
328 |
self.model_dropdown_export,
|
@@ -340,12 +351,14 @@ class Demo:
|
|
340 |
return [self.model_dropdown.update(choices=list(model_map.keys()), value=current_model_name)]
|
341 |
|
342 |
def cancel_training(self):
|
343 |
-
|
344 |
-
|
|
|
|
|
345 |
|
346 |
def train(self, repo_id_or_path, img_size, prompt, train_method, neg_guidance, iterations, lr,
|
347 |
use_adamw8bit=True, use_xformers=False, use_amp=False, use_gradient_checkpointing=False,
|
348 |
-
seed=-1, save_every=-1,
|
349 |
validation_prompts: str=None, sample_positive_prompts: str=None, sample_negative_prompts: str=None, validate_every_n_steps=-1,
|
350 |
pbar=gr.Progress(track_tqdm=True)):
|
351 |
"""
|
@@ -373,8 +386,6 @@ class Demo:
|
|
373 |
if self.training:
|
374 |
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
|
375 |
|
376 |
-
train.training_should_cancel = False
|
377 |
-
|
378 |
print(f"Training {repo_id_or_path} at {img_size} to remove '{prompt}'.")
|
379 |
print(f" {train_method}, negative guidance {neg_guidance}, lr {lr}, {iterations} iterations.")
|
380 |
print(f" {'✅' if use_gradient_checkpointing else '❌'} gradient checkpointing")
|
@@ -403,8 +414,8 @@ class Demo:
|
|
403 |
break
|
404 |
# repeat until a not-in-use path is found
|
405 |
|
406 |
-
validation_prompts = [] if validation_prompts is None else validation_prompts.split('\n')
|
407 |
-
sample_positive_prompts = [] if sample_positive_prompts is None else sample_positive_prompts.split('\n')
|
408 |
sample_negative_prompts = [] if sample_negative_prompts is None else sample_negative_prompts.split('\n')
|
409 |
print(f"validation prompts: {validation_prompts}")
|
410 |
print(f"sample positive prompts: {sample_positive_prompts}")
|
@@ -413,9 +424,11 @@ class Demo:
|
|
413 |
try:
|
414 |
self.training = True
|
415 |
self.train_cancel_button.update(interactive=True)
|
|
|
416 |
save_path = train(repo_id_or_path, img_size, prompt, modules, frozen, iterations, neg_guidance, lr, save_path,
|
417 |
use_adamw8bit, use_xformers, use_amp, use_gradient_checkpointing,
|
418 |
seed=int(seed), save_every_n_steps=int(save_every),
|
|
|
419 |
validate_every_n_steps=validate_every_n_steps, validation_prompts=validation_prompts,
|
420 |
sample_positive_prompts=sample_positive_prompts, sample_negative_prompts=sample_negative_prompts)
|
421 |
if save_path is None:
|
|
|
76 |
label="Seed",
|
77 |
value=42
|
78 |
)
|
79 |
+
with gr.Row():
|
80 |
self.img_width_infr = gr.Slider(
|
81 |
label="Image width",
|
82 |
minimum=256,
|
|
|
92 |
step=64
|
93 |
)
|
94 |
|
95 |
+
with gr.Row():
|
96 |
self.model_dropdown = gr.Dropdown(
|
97 |
label="ESD Model",
|
98 |
choices= list(model_map.keys()),
|
|
|
152 |
info="Image size for training, should match the model's native image size"
|
153 |
)
|
154 |
|
155 |
+
self.train_sample_batch_size_input = gr.Slider(
|
156 |
+
value=1,
|
157 |
+
step=1,
|
158 |
+
minimum=1,
|
159 |
+
maximum=32,
|
160 |
+
label="Sample generation batch size",
|
161 |
+
info="Batch size for sample generation, larger needs more VRAM"
|
162 |
+
)
|
163 |
+
|
164 |
self.prompt_input = gr.Text(
|
165 |
placeholder="Enter prompt...",
|
166 |
label="Prompt to Erase",
|
|
|
322 |
self.train_use_gradient_checkpointing_input,
|
323 |
self.train_seed_input,
|
324 |
self.train_save_every_input,
|
325 |
+
self.train_sample_batch_size_input,
|
326 |
self.train_validation_prompts,
|
327 |
self.train_sample_positive_prompts,
|
328 |
self.train_sample_negative_prompts,
|
|
|
332 |
)
|
333 |
self.train_cancel_button.click(self.cancel_training,
|
334 |
inputs=[],
|
335 |
+
outputs=[self.train_cancel_button],
|
336 |
+
cancels=[train_event])
|
337 |
|
338 |
self.export_button.click(self.export, inputs = [
|
339 |
self.model_dropdown_export,
|
|
|
351 |
return [self.model_dropdown.update(choices=list(model_map.keys()), value=current_model_name)]
|
352 |
|
353 |
def cancel_training(self):
|
354 |
+
if self.training:
|
355 |
+
training_should_cancel.release()
|
356 |
+
print("cancellation requested...")
|
357 |
+
return [gr.update(value="Cancelling...", interactive=True)]
|
358 |
|
359 |
def train(self, repo_id_or_path, img_size, prompt, train_method, neg_guidance, iterations, lr,
|
360 |
use_adamw8bit=True, use_xformers=False, use_amp=False, use_gradient_checkpointing=False,
|
361 |
+
seed=-1, save_every=-1, sample_batch_size=1,
|
362 |
validation_prompts: str=None, sample_positive_prompts: str=None, sample_negative_prompts: str=None, validate_every_n_steps=-1,
|
363 |
pbar=gr.Progress(track_tqdm=True)):
|
364 |
"""
|
|
|
386 |
if self.training:
|
387 |
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
|
388 |
|
|
|
|
|
389 |
print(f"Training {repo_id_or_path} at {img_size} to remove '{prompt}'.")
|
390 |
print(f" {train_method}, negative guidance {neg_guidance}, lr {lr}, {iterations} iterations.")
|
391 |
print(f" {'✅' if use_gradient_checkpointing else '❌'} gradient checkpointing")
|
|
|
414 |
break
|
415 |
# repeat until a not-in-use path is found
|
416 |
|
417 |
+
validation_prompts = [] if validation_prompts is None else [p for p in validation_prompts.split('\n') if len(p)>0]
|
418 |
+
sample_positive_prompts = [] if sample_positive_prompts is None else [p for p in sample_positive_prompts.split('\n') if len(p)>0]
|
419 |
sample_negative_prompts = [] if sample_negative_prompts is None else sample_negative_prompts.split('\n')
|
420 |
print(f"validation prompts: {validation_prompts}")
|
421 |
print(f"sample positive prompts: {sample_positive_prompts}")
|
|
|
424 |
try:
|
425 |
self.training = True
|
426 |
self.train_cancel_button.update(interactive=True)
|
427 |
+
batch_size = 1 # other batch sizes are non-functional
|
428 |
save_path = train(repo_id_or_path, img_size, prompt, modules, frozen, iterations, neg_guidance, lr, save_path,
|
429 |
use_adamw8bit, use_xformers, use_amp, use_gradient_checkpointing,
|
430 |
seed=int(seed), save_every_n_steps=int(save_every),
|
431 |
+
batch_size=int(batch_size), sample_batch_size=int(sample_batch_size),
|
432 |
validate_every_n_steps=validate_every_n_steps, validation_prompts=validation_prompts,
|
433 |
sample_positive_prompts=sample_positive_prompts, sample_negative_prompts=sample_negative_prompts)
|
434 |
if save_path is None:
|
train.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os.path
|
2 |
import random
|
|
|
3 |
|
4 |
from accelerate.utils import set_seed
|
5 |
from diffusers import StableDiffusionPipeline
|
@@ -15,7 +16,7 @@ from isolate_rng import isolate_rng
|
|
15 |
from memory_efficiency import MemoryEfficiencyWrapper
|
16 |
from torch.utils.tensorboard import SummaryWriter
|
17 |
|
18 |
-
training_should_cancel =
|
19 |
|
20 |
def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
21 |
validation_embeddings: torch.FloatTensor,
|
@@ -24,8 +25,11 @@ def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
|
24 |
logger: SummaryWriter, use_amp: bool,
|
25 |
global_step: int,
|
26 |
validation_seed: int = 555,
|
|
|
|
|
27 |
):
|
28 |
print("validating...")
|
|
|
29 |
with isolate_rng(include_cuda=True), torch.no_grad():
|
30 |
set_seed(validation_seed)
|
31 |
criteria = torch.nn.MSELoss()
|
@@ -33,14 +37,14 @@ def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
|
33 |
val_count = 5
|
34 |
|
35 |
nsteps=50
|
36 |
-
|
37 |
|
38 |
-
for i in tqdm(range(
|
39 |
-
if training_should_cancel:
|
40 |
print("cancel requested, bailing")
|
41 |
return
|
42 |
accumulated_loss = None
|
43 |
-
this_validation_embeddings = validation_embeddings[i*2:i*2
|
44 |
for j in range(val_count):
|
45 |
iteration = random.randint(1, nsteps)
|
46 |
diffused_latents = get_diffused_latents(diffuser, nsteps, this_validation_embeddings, iteration, use_amp)
|
@@ -55,12 +59,11 @@ def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
|
55 |
loss = criteria(negative_latents, neutral_latents - (negative_guidance*(positive_latents - neutral_latents)))
|
56 |
accumulated_loss = (accumulated_loss or 0) + loss.item()
|
57 |
logger.add_scalar(f"loss/val_{i}", accumulated_loss/val_count, global_step=global_step)
|
58 |
-
pbar.step()
|
59 |
|
60 |
-
|
61 |
-
for i in tqdm(range(0,
|
62 |
-
print(f'making sample {i}...')
|
63 |
-
if training_should_cancel:
|
64 |
print("cancel requested, bailing")
|
65 |
return
|
66 |
with finetuner:
|
@@ -72,10 +75,16 @@ def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
|
72 |
safety_checker=None,
|
73 |
feature_extractor=None,
|
74 |
requires_safety_checker=False)
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
76 |
num_inference_steps=50)
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
"""
|
81 |
with finetuner, torch.cuda.amp.autocast(enabled=use_amp):
|
@@ -90,6 +99,7 @@ def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
|
90 |
|
91 |
def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations, negative_guidance, lr, save_path,
|
92 |
use_adamw8bit=True, use_xformers=True, use_amp=True, use_gradient_checkpointing=False, seed=-1,
|
|
|
93 |
save_every_n_steps=-1, validate_every_n_steps=-1,
|
94 |
validation_prompts=[], sample_positive_prompts=[], sample_negative_prompts=[]):
|
95 |
|
@@ -101,8 +111,6 @@ def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations
|
|
101 |
neutral_latents = None
|
102 |
positive_latents = None
|
103 |
|
104 |
-
global training_should_cancel
|
105 |
-
|
106 |
nsteps = 50
|
107 |
print(f"using img_size of {img_size}")
|
108 |
diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=repo_id_or_path, native_img_size=img_size).to('cuda')
|
@@ -135,6 +143,13 @@ def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations
|
|
135 |
validation_embeddings = diffuser.get_cond_and_uncond_embeddings(validation_prompts, n_imgs=1)
|
136 |
sample_embeddings = diffuser.get_cond_and_uncond_embeddings(sample_positive_prompts, sample_negative_prompts, n_imgs=1)
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
#if use_amp:
|
139 |
# diffuser.vae = diffuser.vae.to(diffuser.vae.device, dtype=torch.float16)
|
140 |
|
@@ -151,14 +166,15 @@ def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations
|
|
151 |
validation_embeddings=validation_embeddings,
|
152 |
sample_embeddings=sample_embeddings,
|
153 |
neutral_embeddings=neutral_text_embeddings,
|
154 |
-
logger=logger, use_amp=False, global_step=0
|
|
|
155 |
|
156 |
prev_losses = []
|
157 |
start_loss = None
|
158 |
max_prev_loss_count = 10
|
159 |
try:
|
160 |
for i in pbar:
|
161 |
-
if training_should_cancel:
|
162 |
print("cancel requested, bailing")
|
163 |
return None
|
164 |
|
@@ -210,7 +226,8 @@ def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations
|
|
210 |
validation_embeddings=validation_embeddings,
|
211 |
sample_embeddings=sample_embeddings,
|
212 |
neutral_embeddings=neutral_text_embeddings,
|
213 |
-
logger=logger, use_amp=False, global_step=i
|
|
|
214 |
torch.save(finetuner.state_dict(), save_path)
|
215 |
return save_path
|
216 |
finally:
|
@@ -220,7 +237,7 @@ def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations
|
|
220 |
|
221 |
def get_diffused_latents(diffuser, nsteps, text_embeddings, end_iteration, use_amp):
|
222 |
diffuser.set_scheduler_timesteps(nsteps)
|
223 |
-
latents = diffuser.get_initial_latents(
|
224 |
latents_steps, _ = diffuser.diffusion(
|
225 |
latents,
|
226 |
text_embeddings,
|
|
|
1 |
import os.path
|
2 |
import random
|
3 |
+
import multiprocessing
|
4 |
|
5 |
from accelerate.utils import set_seed
|
6 |
from diffusers import StableDiffusionPipeline
|
|
|
16 |
from memory_efficiency import MemoryEfficiencyWrapper
|
17 |
from torch.utils.tensorboard import SummaryWriter
|
18 |
|
19 |
+
training_should_cancel = multiprocessing.Semaphore(0)
|
20 |
|
21 |
def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
|
22 |
validation_embeddings: torch.FloatTensor,
|
|
|
25 |
logger: SummaryWriter, use_amp: bool,
|
26 |
global_step: int,
|
27 |
validation_seed: int = 555,
|
28 |
+
batch_size: int = 1,
|
29 |
+
sample_batch_size: int = 1 # might need to be smaller than batch_size
|
30 |
):
|
31 |
print("validating...")
|
32 |
+
assert batch_size==1, "batch_size != 1 not implemented work"
|
33 |
with isolate_rng(include_cuda=True), torch.no_grad():
|
34 |
set_seed(validation_seed)
|
35 |
criteria = torch.nn.MSELoss()
|
|
|
37 |
val_count = 5
|
38 |
|
39 |
nsteps=50
|
40 |
+
num_validation_batches = validation_embeddings.shape[0] // (batch_size*2)
|
41 |
|
42 |
+
for i in tqdm(range(num_validation_batches)):
|
43 |
+
if training_should_cancel.acquire(block=False):
|
44 |
print("cancel requested, bailing")
|
45 |
return
|
46 |
accumulated_loss = None
|
47 |
+
this_validation_embeddings = validation_embeddings[i*batch_size*2:(i+1)*batch_size*2]
|
48 |
for j in range(val_count):
|
49 |
iteration = random.randint(1, nsteps)
|
50 |
diffused_latents = get_diffused_latents(diffuser, nsteps, this_validation_embeddings, iteration, use_amp)
|
|
|
59 |
loss = criteria(negative_latents, neutral_latents - (negative_guidance*(positive_latents - neutral_latents)))
|
60 |
accumulated_loss = (accumulated_loss or 0) + loss.item()
|
61 |
logger.add_scalar(f"loss/val_{i}", accumulated_loss/val_count, global_step=global_step)
|
|
|
62 |
|
63 |
+
num_sample_batches = sample_embeddings.shape[0] // (sample_batch_size*2)
|
64 |
+
for i in tqdm(range(0, num_sample_batches)):
|
65 |
+
print(f'making sample batch {i}...')
|
66 |
+
if training_should_cancel.acquire(block=False):
|
67 |
print("cancel requested, bailing")
|
68 |
return
|
69 |
with finetuner:
|
|
|
75 |
safety_checker=None,
|
76 |
feature_extractor=None,
|
77 |
requires_safety_checker=False)
|
78 |
+
batch_start = (i * sample_batch_size)*2
|
79 |
+
next_batch_start = batch_start + sample_batch_size*2 + 1
|
80 |
+
batch_negative_prompt_embeds = torch.cat([sample_embeddings[i+0:i+1] for i in range(batch_start, next_batch_start, 2)])
|
81 |
+
batch_prompt_embeds = torch.cat([sample_embeddings[i+1:i+2] for i in range(batch_start, next_batch_start, 2)])
|
82 |
+
images = pipeline(prompt_embeds=batch_prompt_embeds, #sample_embeddings[i*2+1:i*2+2],
|
83 |
+
negative_prompt_embeds=batch_negative_prompt_embeds, # sample_embeddings[i*2:i*2+1],
|
84 |
num_inference_steps=50)
|
85 |
+
for j in range(sample_batch_size):
|
86 |
+
image_tensor = transforms.ToTensor()(images.images[j])
|
87 |
+
logger.add_image(f"samples/{i*sample_batch_size+j}", img_tensor=image_tensor, global_step=global_step)
|
88 |
|
89 |
"""
|
90 |
with finetuner, torch.cuda.amp.autocast(enabled=use_amp):
|
|
|
99 |
|
100 |
def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations, negative_guidance, lr, save_path,
|
101 |
use_adamw8bit=True, use_xformers=True, use_amp=True, use_gradient_checkpointing=False, seed=-1,
|
102 |
+
batch_size=1, sample_batch_size=1,
|
103 |
save_every_n_steps=-1, validate_every_n_steps=-1,
|
104 |
validation_prompts=[], sample_positive_prompts=[], sample_negative_prompts=[]):
|
105 |
|
|
|
111 |
neutral_latents = None
|
112 |
positive_latents = None
|
113 |
|
|
|
|
|
114 |
nsteps = 50
|
115 |
print(f"using img_size of {img_size}")
|
116 |
diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=repo_id_or_path, native_img_size=img_size).to('cuda')
|
|
|
143 |
validation_embeddings = diffuser.get_cond_and_uncond_embeddings(validation_prompts, n_imgs=1)
|
144 |
sample_embeddings = diffuser.get_cond_and_uncond_embeddings(sample_positive_prompts, sample_negative_prompts, n_imgs=1)
|
145 |
|
146 |
+
for i, validation_prompt in enumerate(validation_prompts):
|
147 |
+
logger.add_text(f"val/{i}", f"validation prompt: \"{validation_prompt}\"")
|
148 |
+
for i in range(len(sample_positive_prompts)):
|
149 |
+
positive_prompt = sample_positive_prompts[i]
|
150 |
+
negative_prompt = "" if i >= len(sample_negative_prompts) else sample_negative_prompts[i]
|
151 |
+
logger.add_text(f"sample/{i}", f"sample prompt: \"{positive_prompt}\", negative: \"{negative_prompt}\"")
|
152 |
+
|
153 |
#if use_amp:
|
154 |
# diffuser.vae = diffuser.vae.to(diffuser.vae.device, dtype=torch.float16)
|
155 |
|
|
|
166 |
validation_embeddings=validation_embeddings,
|
167 |
sample_embeddings=sample_embeddings,
|
168 |
neutral_embeddings=neutral_text_embeddings,
|
169 |
+
logger=logger, use_amp=False, global_step=0,
|
170 |
+
batch_size=batch_size, sample_batch_size=sample_batch_size)
|
171 |
|
172 |
prev_losses = []
|
173 |
start_loss = None
|
174 |
max_prev_loss_count = 10
|
175 |
try:
|
176 |
for i in pbar:
|
177 |
+
if training_should_cancel.acquire(block=False):
|
178 |
print("cancel requested, bailing")
|
179 |
return None
|
180 |
|
|
|
226 |
validation_embeddings=validation_embeddings,
|
227 |
sample_embeddings=sample_embeddings,
|
228 |
neutral_embeddings=neutral_text_embeddings,
|
229 |
+
logger=logger, use_amp=False, global_step=i,
|
230 |
+
batch_size=batch_size, sample_batch_size=sample_batch_size)
|
231 |
torch.save(finetuner.state_dict(), save_path)
|
232 |
return save_path
|
233 |
finally:
|
|
|
237 |
|
238 |
def get_diffused_latents(diffuser, nsteps, text_embeddings, end_iteration, use_amp):
|
239 |
diffuser.set_scheduler_timesteps(nsteps)
|
240 |
+
latents = diffuser.get_initial_latents(len(text_embeddings)//2, n_prompts=1)
|
241 |
latents_steps, _ = diffuser.diffusion(
|
242 |
latents,
|
243 |
text_embeddings,
|