Spaces:
Runtime error
Runtime error
Commit
·
c0e9162
1
Parent(s):
c7b4c51
Update app.py
Browse files
app.py
CHANGED
@@ -32,8 +32,8 @@ def create_pattern_mnist(image, label, model):
|
|
32 |
def fgsm_mnist(image, label, model, epsilon):
|
33 |
pattern = create_pattern_mnist(image, label, model)
|
34 |
adv_x = image + epsilon*pattern
|
35 |
-
adv_x = tf.clip_by_value(adv_x,
|
36 |
-
adv_x = adv_x * 0.5 + 0.5
|
37 |
return adv_x.numpy()
|
38 |
|
39 |
|
@@ -46,8 +46,8 @@ def iterative_fgsm_mnist(image, label, model, epsilon, alpha, niter):
|
|
46 |
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
|
47 |
adv_x = adv_x.numpy()
|
48 |
adv_x = adv_x.reshape(adv_x.shape[1])
|
49 |
-
adv_x = tf.clip_by_value(adv_x,
|
50 |
-
adv_x = adv_x * 0.5 + 0.5
|
51 |
return adv_x.numpy()
|
52 |
|
53 |
def iterative_least_likely_fgsm_mnist(image, model, epsilon, alpha, niter, nb_classes):
|
@@ -61,8 +61,8 @@ def iterative_least_likely_fgsm_mnist(image, model, epsilon, alpha, niter, nb_cl
|
|
61 |
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
|
62 |
adv_x = adv_x.numpy()
|
63 |
adv_x = adv_x.reshape(adv_x.shape[1])
|
64 |
-
adv_x = tf.clip_by_value(adv_x,
|
65 |
-
adv_x = adv_x * 0.5 + 0.5
|
66 |
return adv_x.numpy()
|
67 |
|
68 |
# Attack functions cifar10
|
@@ -88,8 +88,8 @@ def create_pattern_cifar10(image, label, model):
|
|
88 |
def fgsm_cifar10(image, label, model, epsilon):
|
89 |
pattern = create_pattern_cifar10(image, label, model)
|
90 |
adv_x = image + epsilon*pattern
|
91 |
-
adv_x = tf.clip_by_value(adv_x,
|
92 |
-
adv_x = adv_x * 0.5 + 0.5
|
93 |
return adv_x.numpy()
|
94 |
|
95 |
|
@@ -102,8 +102,8 @@ def iterative_fgsm_cifar10(image, label, model, epsilon, alpha, niter):
|
|
102 |
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
|
103 |
adv_x = adv_x.numpy()
|
104 |
adv_x = adv_x.reshape((32,32,3))
|
105 |
-
adv_x = tf.clip_by_value(adv_x,
|
106 |
-
adv_x = adv_x * 0.5 + 0.5
|
107 |
return adv_x.numpy()
|
108 |
|
109 |
def iterative_least_likely_fgsm_cifar10(image, model, epsilon, alpha, niter, nb_classes):
|
@@ -117,8 +117,8 @@ def iterative_least_likely_fgsm_cifar10(image, model, epsilon, alpha, niter, nb_
|
|
117 |
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
|
118 |
adv_x = adv_x.numpy()
|
119 |
adv_x = adv_x.reshape((32,32,3))
|
120 |
-
adv_x = tf.clip_by_value(adv_x,
|
121 |
-
adv_x = adv_x * 0.5 + 0.5
|
122 |
return adv_x.numpy()
|
123 |
|
124 |
def fn(dataset, attack):
|
|
|
32 |
def fgsm_mnist(image, label, model, epsilon):
|
33 |
pattern = create_pattern_mnist(image, label, model)
|
34 |
adv_x = image + epsilon*pattern
|
35 |
+
adv_x = tf.clip_by_value(adv_x, 0, 1)
|
36 |
+
# adv_x = adv_x * 0.5 + 0.5
|
37 |
return adv_x.numpy()
|
38 |
|
39 |
|
|
|
46 |
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
|
47 |
adv_x = adv_x.numpy()
|
48 |
adv_x = adv_x.reshape(adv_x.shape[1])
|
49 |
+
adv_x = tf.clip_by_value(adv_x, 0, 1)
|
50 |
+
# adv_x = adv_x * 0.5 + 0.5
|
51 |
return adv_x.numpy()
|
52 |
|
53 |
def iterative_least_likely_fgsm_mnist(image, model, epsilon, alpha, niter, nb_classes):
|
|
|
61 |
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
|
62 |
adv_x = adv_x.numpy()
|
63 |
adv_x = adv_x.reshape(adv_x.shape[1])
|
64 |
+
adv_x = tf.clip_by_value(adv_x, 0, 1)
|
65 |
+
# adv_x = adv_x * 0.5 + 0.5
|
66 |
return adv_x.numpy()
|
67 |
|
68 |
# Attack functions cifar10
|
|
|
88 |
def fgsm_cifar10(image, label, model, epsilon):
|
89 |
pattern = create_pattern_cifar10(image, label, model)
|
90 |
adv_x = image + epsilon*pattern
|
91 |
+
adv_x = tf.clip_by_value(adv_x, 0, 1)
|
92 |
+
# adv_x = adv_x * 0.5 + 0.5
|
93 |
return adv_x.numpy()
|
94 |
|
95 |
|
|
|
102 |
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
|
103 |
adv_x = adv_x.numpy()
|
104 |
adv_x = adv_x.reshape((32,32,3))
|
105 |
+
adv_x = tf.clip_by_value(adv_x, 0, 1)
|
106 |
+
# adv_x = adv_x * 0.5 + 0.5
|
107 |
return adv_x.numpy()
|
108 |
|
109 |
def iterative_least_likely_fgsm_cifar10(image, model, epsilon, alpha, niter, nb_classes):
|
|
|
117 |
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
|
118 |
adv_x = adv_x.numpy()
|
119 |
adv_x = adv_x.reshape((32,32,3))
|
120 |
+
adv_x = tf.clip_by_value(adv_x, 0, 1)
|
121 |
+
# adv_x = adv_x * 0.5 + 0.5
|
122 |
return adv_x.numpy()
|
123 |
|
124 |
def fn(dataset, attack):
|