FanFic-Illustrator / utils.py
dahara1's picture
Upload 2 files
53a3cc2 verified
import gc
import os
import random
import numpy as np
import json
import torch
import uuid
from PIL import Image, PngImagePlugin
from datetime import datetime
from typing import Callable, Dict, Optional, Tuple, Any, List
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
AutoencoderKL,
StableDiffusionXLPipeline,
)
import logging
MAX_SEED = np.iinfo(np.int32).max
def is_space_environment():
return "SPACE_ID" in os.environ and os.environ.get("SYSTEM") == "spaces"
def seed_everything(seed: int) -> torch.Generator:
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
generator = torch.Generator()
generator.manual_seed(seed)
return generator
def parse_aspect_ratio(aspect_ratio: str) -> Optional[Tuple[int, int]]:
if aspect_ratio == "Custom":
return None
width, height = aspect_ratio.split(" x ")
return int(width), int(height)
def aspect_ratio_handler(
aspect_ratio: str, custom_width: int, custom_height: int
) -> Tuple[int, int]:
if aspect_ratio == "Custom":
return custom_width, custom_height
else:
width, height = parse_aspect_ratio(aspect_ratio)
return width, height
def get_scheduler(scheduler_config: Dict, name: str) -> Optional[Callable]:
scheduler_factory_map = {
"DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(
scheduler_config, use_karras_sigmas=True
),
"DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(
scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
),
"Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config),
"Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(
scheduler_config
),
"DDIM": lambda: DDIMScheduler.from_config(scheduler_config),
}
return scheduler_factory_map.get(name, lambda: None)()
def free_memory() -> None:
"""Free up GPU and system memory."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
def preprocess_prompt(
style_dict,
style_name: str,
positive: str,
negative: str = "",
add_style: bool = True,
) -> Tuple[str, str]:
p, n = style_dict.get(style_name, style_dict["(None)"])
if add_style and positive.strip():
formatted_positive = p.format(prompt=positive)
else:
formatted_positive = positive
combined_negative = n
if negative.strip():
if combined_negative:
combined_negative += ", " + negative
else:
combined_negative = negative
return formatted_positive, combined_negative
def common_upscale(
samples: torch.Tensor,
width: int,
height: int,
upscale_method: str,
) -> torch.Tensor:
return torch.nn.functional.interpolate(
samples, size=(height, width), mode=upscale_method
)
def upscale(
samples: torch.Tensor, upscale_method: str, scale_by: float
) -> torch.Tensor:
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
return common_upscale(samples, width, height, upscale_method)
def preprocess_image_dimensions(width, height):
if width % 8 != 0:
width = width - (width % 8)
if height % 8 != 0:
height = height - (height % 8)
return width, height
def save_image(image, metadata, output_dir, is_colab):
if is_colab:
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{current_time}.png"
else:
filename = str(uuid.uuid4()) + ".png"
os.makedirs(output_dir, exist_ok=True)
filepath = os.path.join(output_dir, filename)
metadata_str = json.dumps(metadata)
info = PngImagePlugin.PngInfo()
info.add_text("parameters", metadata_str)
image.save(filepath, "PNG", pnginfo=info)
return filepath
def is_google_colab():
try:
import google.colab
return True
except:
return False
def load_pipeline(model_name: str, device: torch.device, hf_token: Optional[str] = None, vae: Optional[AutoencoderKL] = None) -> Any:
"""Load the Stable Diffusion pipeline."""
try:
logging.info(f"Loading pipeline from {model_name}...")
# Choose the right loading method based on file path or model ID
if os.path.exists(model_name) and os.path.isdir(model_name):
# It's a local directory path
if os.path.exists(os.path.join(model_name, "animagine-xl-4.0.safetensors")):
# Load from single file if it exists
pipe = StableDiffusionXLPipeline.from_single_file(
os.path.join(model_name, "animagine-xl-4.0.safetensors"),
torch_dtype=torch.float16,
use_safetensors=True,
custom_pipeline="lpw_stable_diffusion_xl",
add_watermarker=False
)
else:
# Load the VAE first to ensure it's not None
vae_path = os.path.join(model_name, "vae")
if vae is None and os.path.exists(vae_path):
logging.info(f"Loading VAE from {vae_path}...")
vae = AutoencoderKL.from_pretrained(vae_path, torch_dtype=torch.float16)
# Load pipeline from directory
pipe = StableDiffusionXLPipeline.from_pretrained(
model_name,
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
custom_pipeline="lpw_stable_diffusion_xl",
add_watermarker=False
)
elif model_name.endswith(".safetensors"):
# It's a single file
pipe = StableDiffusionXLPipeline.from_single_file(
model_name,
torch_dtype=torch.float16,
use_safetensors=True,
custom_pipeline="lpw_stable_diffusion_xl",
add_watermarker=False
)
else:
# It's a Hugging Face model ID
pipe = StableDiffusionXLPipeline.from_pretrained(
model_name,
vae=vae,
token=hf_token,
torch_dtype=torch.float16,
use_safetensors=True,
custom_pipeline="lpw_stable_diffusion_xl",
add_watermarker=False
)
# デバイス移動の部分を修正
if "SPACE_ID" in os.environ and os.environ.get("SYSTEM") == "spaces":
# Stateless GPU環境ではデバイス移動を特別に扱う
return pipe
else:
# 通常の環境では以前のコードを使用
pipe.to(device)
return pipe
logging.info("Pipeline loaded successfully!")
return pipe
except Exception as e:
logging.error(f"Failed to load pipeline: {str(e)}", exc_info=True)
raise