File size: 1,207 Bytes
17cf727
81d944c
d9e3ae2
 
2d85383
d9e3ae2
2d85383
baa0685
 
d9e3ae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43ec0d8
90d0791
baa0685
d9e3ae2
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import gradio as gr
import os
import time
from collections import defaultdict

# Environment variables for authentication and model
token = os.environ["TOKEN"]
model = os.environ["MODEL"]

# Request tracking for rate limiting
request_log = defaultdict(list)

def rate_limited_wrapper(*args, **kwargs):
    user_identifier = "user_ip_placeholder"  # Replace with logic to retrieve user's IP or unique ID
    current_time = time.time()

    # Remove requests older than 60 seconds from the log
    request_log[user_identifier] = [t for t in request_log[user_identifier] if current_time - t < 60]

    # Check the number of requests in the last minute
    if len(request_log[user_identifier]) >= 5:  # Example: Limit to 5 requests per minute
        return "Rate limit exceeded. Please try again later."

    # Add the current request to the log
    request_log[user_identifier].append(current_time)

    # Forward request to the loaded model
    return demo(*args, **kwargs)

# Load the model from Hugging Face Spaces
demo = gr.load(model, src="spaces", token=token)

# Launch the interface with the rate-limited wrapper
demo.launch(
    show_api=False,
    show_error=False,
    quiet=True,
    debug=False
)